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ABSTRACT 
GAMESS, a quantum chemistry program for electronic structure calculations, has 

been freely shared by high-performance application scientists for over twenty years. It 

provides a rich set of functionalities and can be run on a variety of parallel platforms through 

a distributed data interface. While a chemistry computation is sophisticated and hard to 

develop, the resource sharing among different chemistry packages will accelerate the 

development of new computations and encourage the cooperation of scientists from 

universities and laboratories. Common Component Architecture (CCA) offers an 

environment that allows scientific packages to dynamically interact with each other through 

components, which enable dynamic coupling of GAMESS with other chemistry packages, 

such as MPQC and NWChem. Conceptually, a computation can be constructed with “plug-

and-play” components from scientific packages and require more than componentizing 

functions/subroutines of interest, especially for large-scale scientific packages with a long 

development history. In this research, we present our efforts to construct components for 

GAMESS that conform to the CCA specification. The goal is to enable the fine-grained 

interoperability between three quantum chemistry programs, GAMESS, MPQC and 

NWChem, via components. We focus on one of the three packages, GAMESS; delineate the 

structure of GAMESS computations, followed by our approaches to its component 

development. Then we use GAMESS as the driver to interoperate integral components from 

the other two packages, and show the solutions for interoperability problems along with 

preliminary results. To justify the versatility of the design, the Tuning and Analysis Utility 

(TAU) components have been coupled with GAMESS and its components, so that the 

performance of GAMESS and its components may be analyzed for a wide range of system 

parameters. 
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CHAPTER 1.  INTRODUCTION 
High performance scientific simulations in a wide range of areas, such as quantum 

chemistry, climate, high energy physics, earth observation and bioinformatics, often solve 

very complicated problems and require a large amount of resources. Most of the underlying 

programs for the scientific simulations have been under development for a long period of 

time; used different computing languages and programming models. As the new algorithms, 

methodology, and programming models in an area being created and upgraded, the 

corresponding scientific programs become more and more complicated. While each program 

is complicated by its own, the complexity can be hard to manage when several programs 

need to cooperate to perform the same task. The language interoperability also becomes an 

issue.  

The Component Based Software Engineering (CBSE) aims to manage the complexity 

of a software system by using “plug-and-play” components. Those components are deployed 

based on software functionality and can interact with each other on component-based 

frameworks through the well-defined interfaces. The users are able to use the components 

without knowing which programming languages are used for implementing each component. 

The existing commercial available component-based frameworks include Microsoft's 

Component Object Model (COM) [1], the Object Management Group's Common Object 

Request Broker Architecture (CORBA) Component Model [2], and Sun's Enterprise 

JavaBeans [3]. However, none of those frameworks can handle high-performance 

architectures which are required for scientific programs.  

Common Component Architecture (CCA) [4] was just designed for High 

Performance Computing (HPC). CCA offers an opportunity for scientific packages to 

dynamically interact with each other without manually dumping files, converting data 

formats or painstakingly coupling codes on a case-by-case basis. With CCA, scientists are 

able to construct new computations or improve the performance of their software by using 

components provided by other research groups through well-defined interfaces. This 

potential of interoperability encourages application scientists from different scientific 

domains to explore mechanisms to couple existing packages that offer different computing 
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capabilities. Without such a component model, data exchange between two scientific 

packages can only be accomplished through a large amount of file recoding.  

The standards of CCA are defined by the CCA Forum [5], a group of scientists from 

different national laboratories and academic institutes who are researchers in the high 

performance computing community. The CCA Forum aims to define the standards for the 

component-based frameworks for the high performance computing. It has developed several 

tastes of CCA frameworks, the supporting infrastructure and some general-purpose 

components. The language interoperability of CCA is enabled by Babel [6], a tool for solving 

the interoperability of components that are implemented in different programming languages 

such as FORTRAN, C, C++, Python, and Java. Babel relies on the Scientific Interface 

Definition Language (SIDL) for defining interfaces for scientific components.  

Quantum chemistry is one of the scientific disciplines that are actively involved in 

exploring the interoperability capability offered by CCA. The complexity in quantum 

chemistry computations results in a large number of noncommercial packages developed by 

research laboratories and universities (The General Atomic and Molecular Electronic 

Structure System - GAMESS [7], MPQC [8], and NWChem [9] are three major quantum 

chemistry programs from DOE), each with unique capabilities and deficiencies. The 

development of a new method is usually very time-consuming thus it is an important task to 

integrate capabilities of different packages to develop new computations that are not possible 

with any single package.  

While CCA offers an environment for scientific packages to interact with each other, 

a package must be componentized before it is able to provide/use components to/from other 

packages. With the long development history of quantum chemistry programs, efforts to their 

componentizing cannot be accomplished by any single research group. Scientists must join 

together to define a set of standardized interfaces and data structures for computations of 

interest, and then packages are to be componentized accordingly. 

Even with the standardized interfaces and techniques provided by CCA forum, 

componentizing a package with a long development history itself poses a big challenge, 

which must be conquered before enabling interoperability between packages. While 

componentizing quantum chemistry programs on coarse-grain level was conducted in 
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previous studies [10], another important and useful approach for the quantum chemistry 

community is to componentized low-level computations such as molecular integral 

evaluations. 

Molecular integral evaluation is a fundamental problem of all traditional quantum 

chemistry computations. The integral facilities available within one individual quantum 

chemistry program may lack one or more features of the others, limiting the range of 

methods which can be implemented and made available to users of the package. Because 

writing efficient code for computing a new type of molecular integral requires significant 

development effort, it is natural to share the integral facilities as components. The obvious 

benefit of sharing integral capabilities among various packages is the ability to implement 

new theoretical methods very rapidly. 

In this thesis, I will give the background knowledge of this research in Chapter 2, 

including the basic concepts of quantum chemistry, the CCA terms, the parallel method used 

in GAMESS, and some special features of GAMES. In Chapter 3, several important CCA 

interfaces will be introduced and the corresponding components for each chemistry package, 

especially for GAMESS, will be explained in details. We developed the GAMESS CCA 

interface in two different parallel models: GAMESS/DDI and GAMESS/DDI/MPI models. 

GAMESS uses the Data Distributed Interface (DDI) [11] as its parallel communication 

mechanism, which mainly relies on TCP/IP sockets for communication. Integrating the 

GAMESS/DDI system with CCA is our first attempt to integrate GAMESS with the CCA 

framework. Besides TCP/IP sockets, the Message Passing   Interface (MPI) [12] can also be 

used for DDI to enable GAMESS communications and a different mechanism has been 

developed for integrating GAMESS with MPI. In this mechanism DDI depends on MPI, 

instead of TCP/IP sockets, as the communication method. Since MPI is a widely used 

message passing interface, the GAMESS CCA components in this model are easily 

compatible with other components within CCA frameworks.  

The componentizing mechanisms for several GAMESS computations: energy, 

gradient, Hessian, and integral computations, will be presented. The energy, gradient and 

Hessian computations have been incorporated into the GAMESS.ModelFactory component 

and the integral computation has been implemented in GAMESS.IntegralEvaluatorFactory 
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component. The strategies for wrapping the existing GAMESS code and implementation 

details of those GAMESS CCA components will be demonstrated.  

Chapter 4 will cover the integration process of GAMESS with other scientific 

packages, including MPQC and NWChem, in the integral calculation. The discussion of the 

difficulties we encountered and preliminary experiment results will be presented in Chapter 

5. In Chapter 6, we will conclude the research we have done and give the future works. 

1.1 Common Component Architecture 
The purpose of Common Component Architecture is to facilitate and promote the 

development of high performance scientific simulations with little programming 

requirements [4]. The CCA standard specifies just a minimal set of services that is required 

to be CCA compliant [5]. This design philosophy ensures the scientists focus on the 

implementation of components for a program instead of worry much about the interaction of 

components from different packages.  

In the Common Component Architecture, the components are basic units of software 

that are composed together to provide a run-time component environment [5]. Instances of 

components are created and managed within a framework, which provides the basic services 

for components to operate and communicate with each other [5]. Ports are the fully abstract 

interfaces, through which components interact with each other and with the encapsulating 

framework [5]. A component must declare its Provides port to provide its own functions or 

services for other components to use, and also registers its Uses ports to connect references to 

Provides ports that are provided by other components or by the containing framework [5]. 

The communications between different components or between components and frameworks 

are enabled by connecting matched Provides-Uses port pairs through the framework. 

Based on the requirements and restrictions from a wide range of scientific researches, 

several frameworks that compliant to CCA standards have been developed, each has unique 

features. There are two major types of CCA frameworks: direct-connect and distributed 

frameworks [5], where direct-connect frameworks do not have ability to manage components 

distributed on a wide area network, and distributed frameworks supports distributed 

components [5]. CCAFFEINE [14], developed by Sandia National Laboratory, is one of the 
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most commonly used CCA frameworks. It is a light-weight direct-connect framework that 

supports SPMD (Single Program Multiple Data) parallel computing model. Since 

CCAFFEINE was first developed, the CCA forum has continually upgrade it and provided 

tutorials and technical helps for helping scientists in a variety of area to create scientific 

components, it is the best choice for us to start the component development for quantum 

chemistry programs. Other CCA frameworks, such as DCA [15], DECAFE [16], CCAIN, 

which are direct-connect frameworks, and XCAT-JAVA [17], XCAT-C++ [18] and 

SCIRUN-2 [19], which are distributed frameworks, are also popular in some other research 

areas. I will only focus on the design of CCAFFEINE as it is the only one has been used for 

this research. In the future, we may extend chemistry components to be able to run on other 

CCA frameworks. 

CCAFFEINE uses the peer component model, in which each component is treated 

independently without in a hierarchal relationship with other components. Components 

attach to a framework and connect with other components through Provides-Uses port pairs, 

which make them easier to be added or unplugged to/from a framework. When a 

CCAFFEINE framework is running in a parallel environment, each process has its own 

instance of a CCA framework, and an identical set of component instances and connections 

are loaded into each framework [4]. The set of similar component instances that are 

distributed across parallel processes can communicate with each other by using any available 

communication system (i.e. MPI, PVM [20], Global Arrays [21], or shared memory), while 

each framework instance that contains the identical set of component instances and 

connections manages the interactions among component instances within its own process [4]. 

Different sets of component instances are allowed to use different communication systems 

simultaneously under the same framework [4]; this is useful for the integration of legacy 

codes under CCA frameworks since legacy software usually has its own communication 

mechanisms. 

1.2 Quantum Chemistry 
Quantum chemistry is a subfield of theoretical chemistry that uses both physics and 

mathematical methods to solve the electronic structure of the molecule [22]. Molecules are 
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composed of positive charged nuclei and negative charged electrons. Different combinations 

of nuclei and number of electrons or different geometrical arrangements of nuclei in space 

form different kinds of molecules. Several primary problems that the quantum chemistry 

need to solve are: the geometrical arrangements of the nuclei that correspond to stable 

molecules; their relative energies and properties; the rate by which one stable molecule can 

transform into another; and the time dependence of molecular structures and properties [23]. 

However, the only systems that could be calculated correctly by using the quantum chemistry 

theory are those with one or two electrons, such as   molecule. Therefore, different 

approximations are used for finding approximate solutions for different purposes. 

+
2H

There are two kinds of approximation methods in quantum chemistry: ab initio and 

semi-empirical. If solutions are generated without reference to experimental data, the 

methods are usually called ab initio (Latin: “from the beginning”) [23]. The ab initio method 

is usually used for solving smaller molecules, since the calculations are very complex and 

time consuming, scaling formally as the fourth power of the size of the molecules. The semi-

empirical method avoids some time consuming calculations, but uses some parameters 

generated from experimental measurements or by performing ab initio calculations [23]. 

GAMESS, MPQC and NWChem are three of the ab initio quantum chemistry programs.  

The advances in both computer hardware and software have enabled some of 

theoretical methods to be translated into computer programs in order to produce real data that 

cannot otherwise be calculated by human hands. With computer programs, chemists do not 

have to remember every theoretical formula or understand every complicated calculation. 

They just enter the molecular geometry, the type of calculations, and some other features of a 

molecule, and wait for the results computed by computer programs. However, even for the 

same theoretical method, with different algorithms, hardware or computing models, different 

results may be produced. This variety of computations requires the users to choose the right 

set of parameters and methods to be able to get valuable results for a problem. Chemists 

often use the computing results to evaluate a large pool of experimental results or predict 

certain properties a molecule [23], instead of using it as the exact answers. There are many 

possible molecules and associate properties, but only a little portion of them have been 

evaluated by calculation or experiment. With the development of theoretical methods, better 
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algorithms, and the increasing computer power, the chemistry calculations can apply to more 

problems and become more accurate. 

Because of the complexity of quantum chemistry calculations, many programs have 

been created by national laboratories and universities, while each program contains special 

capabilities. It is very complicated and time-consuming to create a new computation from 

scratch in a chemistry program, which may be already implemented in another program. The 

best computations provided in each package can be accessed by utilizing the interoperability 

capability provided by CCA through CCA components.  
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CHAPTER 2.  BACKGROUND 
GAMESS, NWChem and MPQC are three fundamental chemistry packages that are 

developed under the Department of Energy (DOE). The General Atomic and Molecular 

Electronic Structure System (GAMESS) is an ab initio quantum chemistry program, which 

was originally formed from HONDO5 and other programs at the Department of Energy’s 

National Resource for Computations in Chemistry in the late 1970’s [7].  

Most of the source code of GAMESS is designed with FORTRAN 77. While 

portability can be achieved through this design (every modern cluster has a FORTRAN 77 

compiler), incorporating an external module or interacting with other scientific packages can 

be very difficult since scientific packages developed in recent years seldom use FORTRAN 

77 exclusively.  

The Massively Parallel Quantum Chemistry Program (MPQC), written in the C++ 

programming language, computes properties of atoms and molecules from first principles. 

MPQC has been designed as a massively parallel program from the beginning, and it can run 

on a wide range of platforms, from UNIX workstations, symmetric multi-processors, to 

massively parallel architectures.  

The class libraries underlying the MPQC program are written in C++ using an object-

oriented design. Following a class hierarchy very similar to the CCA integral interfaces [24], 

the integral packages are encapsulated by integral evaluator and integral factory interfaces 

described within the MPQC documentation [25]. This encapsulation insures a clean 

separation of the integrals code which greatly simplified packaging the integral packages 

within MPQC as stand-alone components. 

NWChem is a quantum chemistry program that is written in FORTRAN 77. It uses an 

object-oriented design and programming approach to facilitate functionality reuse and hide 

internal data. One example of this is the integral abstract programming interface (API) of 

NWChem. The API exposes only specific aspects of the integral computation to the 

programmer and hides many of the details with regard to which integral programs are used 

(there are currently four different algorithms within NWChem) and how the computations are 

done. This API has initialization routines that require the geometry and the basis set as well 
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as a termination routine that cleans up and terminates the integral computations.  There is a 

set of routines based on the type of integrals to be computed (energy, first or second 

derivative). In addition, the API allows the programmer to select the accuracy (or the 

threshold for radial cutoffs) for the integrals. Once the API has been initialized there are 

specific routines to tell the programmer how much memory is needed for the buffers required 

by the API and then to call each of the different types of integrals that are available. This 

architecture allows any improvements or new integral routines to be automatically realized 

throughout the whole of NWChem. 

NWChem also has basis set objects and geometry objects that must be properly 

populated so that the integral computations work. The population of these objects is usually 

initiated through an input file although they can also be created through functions associated 

with the objects. This is particularly useful in the context of CCA. 

Each program has very different functionalities while sharing some common 

calculations. Instead of recoding a method from one program to make it work in another 

program, CCA provides a method to allow each program to access the functionalities of the 

other programs through pre-defined interfaces. In this research, we will focus on one of the 

chemistry programs: GAMESS, to detail the structure of the GAMESS computations, the 

communication model, and the procedure of componentizing GAMESS. As the base of 

understanding our work, several primary terms and calculations in quantum chemistry will be 

introduced in this section, followed by the structure of GAMESS computations and the 

parallel mechanisms of the Data Distributed Interface (DDI). 

2.1 Quantum Chemistry Calculations 
The heart of quantum chemistry theories is the time-independent Schrödinger 

equation, which in short-hand operator form [23] is given as 

Ψ=Ψ EH                                                                     (2.1) 

Where H is a Hamiltonian operator for a system of nuclei and electrons and it is independent 

of the time; E is the total energy; Ψ is the wave function that display both wave and particle 

characteristics of electronics. The square of the wave function gives the probability of finding 

the electron at a giving position [23].  
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The time-independent Schrödinger equation is used to solve the wave function for 

electrons and nuclei in space and their energies under certain circumstances. For every time-

independent Hamiltonian operator, H, there exists a set of quantum states, Ψn,, known as 

energy eigenstates, and corresponding real numbers En satisfying the eigenvalue equation 

[22], 

nnn EH Ψ=Ψ ||                                                               (2.2) 

The real number En is the eigenvalue of the Hamiltonian, also the total energy. The 

Hamiltonian operator contains operators for kinetic (T) and potential (V) energy of the nuclei 

and electrons. 

nneeneentot VVVTTH ++++=                                                                (2.3) 

∑ ∇=
a

a
a

n M
T 2

2
1

                                                               (2.4) 

∑ ∇−=
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ieT
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2

2
1

                                                                   (2.5) 

∑∑ −
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|                                                         (2.6) 
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> −
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ij ji
ee rr

V
||

1
                                                              (2.7) 

∑∑
> −

=
a ab ba

ba
nn RR

ZZV
||                                                           (2.8) 

Ra is the position vector for nuclei a. ri is the position vector for electron i. Za is the 

atomic number of nuclei a. The Laplacian operator and  involve differentiation with 

respect to the coordinates of electron i and nuclei a [22]. Tn is the operator for the kinetic 

energy of nuclei, Te is the operator for the kinetic energy of electrons, Vne is the operator for 

the coulomb attraction between nuclei and electrons, Vee is the operator for the repulsion 

between electrons, and Vnn is the operator for the repulsion between nuclei.  

2
i∇ 2

a∇

As nuclei are much heavier than electrons and they move very slowly compare to 

electrons do, it is a good approximation to consider electrons moving in the field of fixed 

nuclei [23]. The Schrödinger equation is then separated into two parts: one part describes the 
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electronic wave function for a fixed nuclear geometry and another part describes the nuclear 

wave function [23]. This separation is called the Born-Oppenheimer (BO) approximation.  

Within the Born-Oppenheimer approximation, the kinetic energy of the nuclei Tn can 

be neglected and the repulsion between the nuclei Vnn can be considered as a constant. Thus, 

the remaining terms are called the electronic Hamiltonian. The electronic Hamiltonian 

operator, He, for N electrons [23] is  

nneeneee VVVTH +++=                                                  (2.9) 

mpentot HHTH ++=                                                              (2.10) 
2

12
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−= ∑

=

N

i
i

tot
mp M

H                                                (2.11) 

Hmp is called the mass-polarization, where Mtot is the total mass of all the nuclei and the sum 

is over all electrons. By the Born-Oppenheimer approximation, He depends only on the 

nuclear coordinates in space and not on their momentum. Thus, the electronic Schrödinger 

equation depends parametrically only on the nuclear coordinates [23]. 

The Born-Oppenheimer (BO) approximation introduces very small errors for most 

systems, while some effects have been implicitly neglected. Some correctness approaches 

can be performed after solving the electronic Schrödinger equation. The further details have 

been introduced in the classical quantum chemistry book: “Modern Quantum Chemistry: 

Introduction to Advanced Electronic Structure Theory” that is written by Attila Szabo and 

Neil S. Ostlund [22].  

2.1.1 Basic terms 
The most common type of ab initio calculation is called a Hartree-Fock (HF) 

calculation, which is an approximate method for determining the ground-state wave function 

and ground-state energy of a quantum many-body system [22]. According to the variation 

principle, the approximate solutions for energies are always larger than or equal to the exact 

ground state energy, which means that the lower the energy, the better the wave functions 

[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the 

approximate wave functions that minimizing the energies greater than or equal to the exact 

ground state energy. Considering the wave functions that depend on a set of parameters, we 
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can calculate the “best” wave functions by minimizing the energy that calculated by using a 

given set of parameters. The calculated energy equals to the exact ground state energy only if 

the given wave functions are the exact electronic spatial coordinates for the ground state [22]. 

The Hartree-Fock method 

The most common type of ab initio calculation is called a Hartree-Fock (HF) 

calculation, which is an approximate method for determining the ground-state wave function 

and ground-state energy of a quantum many-body system [22]. According to the variation 

principle, the approximate solutions for energies are always larger than or equal to the exact 

ground state energy, which means that the lower the energy, the better the wave functions 

[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the 

approximate wave functions that minimizing the energies greater than or equal to the exact 

ground state energy. Considering the wave functions that depend on a set of parameters, we 

can calculate the “best” wave functions by minimizing the energy that calculated by using a 

given set of parameters. The calculated energy equals to the exact ground state energy only if 

the given wave functions are the exact electronic spatial coordinates for the ground state [22]. 

The basis set approximation 

In practices, the exact wave functions are impossible to get except for very small 

systems, such as one and two electron systems. Therefore, a set of known basis functions are 

normally used to express the unknown approximate wave functions. The basis function is a 

linear combination of primitive Gaussians, all of the same type and all on the same nucleus, 

but with different exponents:  

 
∑ −=

k
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k

kezyxd
2δ

ααχ
                                       (2.12) 

Where k is the index of the primitive Gaussians, dka is a contraction coefficient, kδ  is the 

exponent, x, y, z are the Cartesian coordinates of the nucleus, and . The 

angular momentum of the shell type (S, P, D, F, G, …) is given by l + m + n. For example, 

when l + m + n = 0, we get an S-type basis function, 
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And, when l + m + n = 1, we have three types of different basis functions,  
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The formulas (2.14), (2.15) and (2.16) correspond to the Px, Py and Pz basis functions, 

respectively. Each set of basis functions are referred as an Atomic Orbital (AO). We define a 

Molecular Orbital (MO) as a linear combination of atomic orbitals. The MO may be written 

as [23]:   

∑=
M

ii c
α

αα χφ                                                             (2.17) 

Where is a molecular orbital that forms from a linear combination of M atomic orbitals, iφ

αχ ;  is a MO coefficient. The Hartree-Fock equations may be written as [23]: icα

∑∑ =
M

ii

M

ii ccF
α

αα
α

αα χεχ                                                (2.18) 

Where Fi is called the Fock operator, iε is the energy. 

The Self-Consistent Field (SCF) techniques 

The Hartree-Fock equations in the atomic orbital basis may be given in [23]: 

βααβ χχ || FF =                                                         (2.19) 

The F matrix contains the Fock matrix elements. Each Fαβ element is given as: 

∑+=
λδ

λδαβλδαβαβ DGhF                                               (2.20) 

Where  denotes integrals involving the one-electron operators;  denotes the two-

electron integrals involving the electron-electron repulsion operator; denotes the 

occupied MOs of coefficients, which is often referred as a density matrix [23]. The density 

αβh αβλδG

λδD
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matrix can only be determined by diagonalizing the Fock matrix. On the other hand, the Fock 

matrix is only determined when all the occupied MOs coefficients are known. Therefore, the 

Fock matrix may be solved by starting from guessing a set of MOs coefficients and 

computing the Fock matrix literately.  

Figure 1 shows how the Fock matrix is calculated by using its own solutions. First, 

the initial parameters (e.g. basis functions, molecular geometry, etc) are fed in and all one- 

and two-electron integrals are calculated. Then a suitable start guess for the MO coefficients 

are generated. The initial density matrix is calculated. The Fock matrix is formed from 

integrals and density matrix. By diagnosing the Fock matrix, the eigenvectors contain the 

new MO coefficients. This new MO coefficients will be fed into the system to form a new 

density matrix. If it is sufficiently close to the previous density matrix, we are done, 

otherwise we need to iteratively calculate the Fock matrix and generate new density matrix 

[23]. Thus, the Hartree-Fock method is also called the Self-Consistent Field (SCF) method.  

 

Obtain initial guess for 
density matrix 

For Fock matrix Two-electron integrals 

Iterate Diagonalize Fock matrix 

Form new density matrix

Figure 1. Illustration of the SCF procedure [23] 

The Hartree-Fock method usually is considered as the starting point for more 

sophisticated methods. Either more approximations will be used, leading to a Semi-empirical 

method, or more basis functions are used to get a more accurate solution [23].  
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The evaluation of gradient and Hessian   

The change in energy for moving a nucleus can be written as a Taylor expansion [23]. 
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Where R is the nuclear geometry. The first derivative,
R
E
∂
∂  is the gradient g, the second 

derivative, 2

2

R
E

∂
∂  is the force constant (Hessian) H etc [23]. A point is a stationary point if the 

gradient at that point is zero. If the R0 geometry is a stationary point, the force constant 

matrix may be used for evaluating harmonic vibrational frequencies and normal coordinates, 

q [23].   

One- and two-electron integrals 

The calculation of one-electron integrals (1- or 2-center integrals, where a center 

refers to a specific atom in a molecule) and two-electron integrals (1-, 2-, 3-, or 4-center 

integrals) is the basis of constructing the Fock matrix in any quantum chemistry program that 

uses the Self-Consistent Field (SCF) method. 

Consider a molecule with N electrons. The nuclear-nuclear repulsion is a constant for 

a given nuclear geometry. The nuclear-electron attraction is the sum of terms, each depends 

only on one electron coordinate since the nuclei are fixed according to the Born-

Oppenheimer (BO) approximation. The same holds for the electron kinetic energy. The 

electron-electron repulsion depends on two-electron coordinate. The operators may be 

collected according to the number of electron indices [23]. 
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The one electron operator hi describes the motion of electron i in the field of all 

nuclei, and gij is the two electron operator giving the electron-electron repulsion. The one- 
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and two-electron integrals in the atomic basis [23] are given in Eqs. (2.24) and (2.25), 

respectively: 
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Where χ is a basis function (or Atomic Orbital, or AO); α, β, γ, and δ are the indexes of 

the basis functions; h is the one-electron operator and g is the two-electron operator.  

In practice, integrals are calculated in batches, where a batch is a collection of 

integrals having the same exponent (in this thesis, we use the term Gaussian shell or shell to 

represent a set of basis functions with the same exponent) [23]. For example, a <pp|pp> type 

batch has 81 individual integrals, where the basis function for a P-type shell has 3 types 

(3*3*3*3 = 81). We usually call a batch of one-electron integrals a shell doublet and a batch 

of two-electron integrals a shell quartet. 

In short, to compute the one- and two-electron integrals, we need the one-electron 

operator, the two-electron operator, the basis set information, and the coordinates of the 

atoms in the molecule (molecular geometry). Different packages may use different 

techniques and can handle different sets of basis functions to calculate integrals. 

2.1.2 Other important concepts 
Use of symmetry.  The group theory is a mathematical tool that often used in 

quantum chemistry for greatly simplifying applications by exploring the symmetrical 

properties in molecules [26]. The symmetric properties of a molecule can be identified by 

some symmetry operations that are performed on the molecule such that the position and 

orientation of the molecule before and after the operations are identical [26]. Those 

symmetry operations are grouped and labeled with specific symbols, including a proper axis 

of rotation (Cn, n = 1,2,3, ...), the reflection through a plane (s), inversion through a center 

(i), the rotation about an axis followed by reflection through a plane perpendicular to that 

axis ( ) [26]. For easily classifying the possible symmetrical operations associate with a 

molecule, the symmetry operations are grouped into different “point group”. By entering a 

k
nS
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point group, a quantum chemistry program can quickly decide to ignore some computations 

that will produce the same results due to the use of symmetry. For example, many one- and 

two-electron integrals for Fock operators can be ignored if the suitable linear combinations of 

basis functions have been formed (symmetry adapted functions) [23]. Almost all quantum 

chemistry programs use the symmetry to reduce the computation cost. Therefore, the use of 

symmetry is an important optimizing approach for a chemistry program and should be 

incorporated into the associate component implementation.  

Integral screening.  Integral screening is a technique to ignore calculating integrals 

that are estimated to have little or no contribution to the final results of the Fock matrix [23]. 

In practices, integral screening is normally done at the batch level, when the largest term of 

an integral batch is smaller than a given cut-off, the whole batch will be neglected [23]. 

Integral screening techniques are normally used as an optimizing mean in quantum chemistry 

programs, although the cut-off or thread hold for screening out integrals may be different in 

different programs.  

Conventional & direct SCF.  The number of two-electron integrals grows as the 

fourth power of the size of the basis set (the number of total basis functions, M). There are 8 

different permutations for a two-electron integral <x1x2|x3x4> that are identical, so the total 

number of integrals can be less (approximately 1/8 of 4M ) [23]. However, the disk space or 

memory that required for storing all the integrals will increase quickly while the size of the 

molecule increases. For example, a basis set with 100 basis functions generates ~  

integrals (each is a double precision floating point number), requiring ~ 100 Mbytes of disk 

space or memory [23]. When the number of basis functions grows to 200, there will be 

~ integrals, and the required disk space or memory grows to ~ 1.5 Gbytes. When the 

size of a molecule is relative small, it may be possible for all the integrals to be stored in 

memory. This kind of approach is very efficient for performing a Hartree-Fock calculation. 

However, for larger molecules, the disk space was the only choice. In a conventional method, 

all of the integrals will be computed at once and stored in the disk for later calculations. In a 

direct method, the integrals will be computed and used immediately at each SCF iterate 

without storing to or reading from the disk. Traditionally, the conventional method was used 

for large molecules when a large amount of disk space was required and the performance of 

6105.12 ×

61025×
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CPUs was relatively slow. As the performance of CPUs increases quickly relative to the 

speed of the disk I/O, it is quite normal for direct SCF jobs to be faster than conventional 

SCF jobs.  

2.2 GAMESS 

GAMESS is able to solve a wide range of quantum chemistry computations including 

Hartree-Fock (HF) wave functions (RHF, ROHF, UHF), GVB, and MCSCF using the self-

consistent field method [7]. It is installed on many high performance computing systems, 

including those at most DOE, DOD, and NSF supercomputer centers, many academic 

institutions, and widely in the private sector.  It is also part of the standard benchmark suites 

employed, for example, by NERSC, by the High Performance Computer Modernization 

Program, and by several computer companies (e.g., IBM). By 2005, GAMESS had grown to 

roughly 650,000 lines of FORTRAN [27] and the number of GAMESS users is estimated to 

be on the order of 100,000.  

Back in 1970’s when GAMESS was developed; the top-down structured 

programming model was the primary software engineering methodology. In a top-down 

program, a large problem is broken into several sub-problems with each subprogram act 

independently to solve a sub-problem. Each subprogram in turn can be broken into smaller 

programs, and eventually, the flow of control reaches down to problems that can be solved 

directly, without further discompose. This programming model is simple and easy to use. 

However, the lack of data structures and the object-oriented design makes the code hard to be 

reused.    

With such a top-down structure, componentizing GAMESS is not as easy as 

componentizing an object-orient program. We have to reorganize the structure of several 

GAMESS computations and comply with its parallel mechanisms to be able to integrate 

GAMESS and CCA frameworks. Since we cannot modify the original GAMESS codes, one 

strategy we used is to create an extra layer of codes – wrapper functions, to rewrite some 

GAMESS computations based on the original GAMESS codes. The methods from CCA 

interfaces invoke the wrapper functions, in stead of using GAMESS subroutines directly. The 

details about the wrapper functions and the CCA interfaces for GAMESS will be introduced 
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in the next chapter. In this section, some basic knowledge about GAMESS computations will 

be presented, including the structures of GAMESS computations, the memory allocation 

strategies, and the communication mechanisms for the Distributed Data Interfaces (DDI). 

2.2.1 GAMESS Structures 
A GAMESS computation starts by reading user input options from an external input 

file. GAMESS groups related input options into many namelist groups, and users have to 

follow the specified format and use pre-defined key words to customize the input 

information. The detailed input description can be found in the documents along with the 

GAMESS distributions.  

Among the user input options, the type of wave functions (the theory), the basis sets 

and the molecular geometry are three kinds of the basic information that are required for all 

computations. In our experiments, we used the SCF theory for all of the computations since it 

is the starting point for more complicated or more accurate calculations. GAMESS can read 

basis sets from three different sources: from basis sets that are normally stored in GAMESS 

source code specified by the $BASIS group, from the $DATA group (both $BASIS and 

$DATA are groups of user input options), or from an external file. If the $BASIS group is 

omitted, the basis set must be given in the $DATA group input. The $DATA group describes 

the global molecular data such as point group symmetry, nuclear coordinates and possibly the 

basis set. 

The memory allocation 

When GAMESS starts, it allocates a large pool of memory from the system; the 

amount of memory can be decided by users from an input file or by the default value. If the 

memory is initialized correctly, a function can requests the amount of memory that is less 

than the available memory, and GAMESS will dynamically allocate the required amount of 

memory from the memory pool to the requester. This memory will be returned to the 

memory pool after being used and released. Figure 2 shows an example of this dynamical 

allocation of memory. The blue rectangle is the large memory pool allocated for GAMESS 

initially, which includes the part from the memory location a to the memory location z. When 

subroutine1 needs to create an array of dimension size1, it will submit a request, request1, for 
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allocating a memory of size size1, where b = a + size1. If size1 is less than the available 

memory, the memory from the location a to the location b will be reserved for array1. Again, 

if subroutine1 sends another request for allocating memory of size2 for array2, where c = b + 

size2 and c is less than z, the memory from the location b to the location c will be reserved 

for array2. The memory from the location c to the location z is still available. The requests 

for returning the memory of array1 and array2 have to be called later to avoid the memory 

leaking error. 

 

Pass arrays between subroutines 

Since there are no pointers or references used in FORTRAN 77, GAMESS passes the 

start location of an array in the memory pool and the size of the array to another subroutine 

as a parameter with the type of integer. The passed memory location in the other subroutine 

will be declared as an array instead of an integer. For example, when a subroutine, 

subroutine2, needs to use array1 and array2 (Figure 2) that allocated in subroutine1, the 

following two steps will be needed: 

a. in subroutine1, call subroutine2 by  
CALL SUBROUTINE2(a, b, size1, size2)  

b. in subroutine2,  
SUBROUTINE2(a, b, size1, size2) 

dimension a(size1), b(size2) 

a b c z 

Availablearray1 array2

request1 request2 

subroutine1 

size1 size2

Figure 2. Memory allocation in GAMESS 
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In this way, a and b can be used in subroutine2 as arrays. The similar strategy for 

passing arrays between subroutines is also used in constructing GAMESS wrapper functions.  

The sequence of a GAMESS computation 

A GAMESS computation starts from the main subroutine and goes to a pre-defined 

branch based on the type of the computation. The global information, such as the program 

configuration, the basis set information and molecule coordinates, is stored as common 

blocks to be shared between subroutines. For some computations, intermediate data are 

stored as disk files to be used iteratively. The approach that GAMESS uses to handle global 

information complicates the componentizing process since we cannot simply pass pointers to 

global information between subroutines as in other object-oriented or modularized programs.  

The execution sequence of the GAMESS main subroutine is shown in the left column 

of Figure 3. First, the GAMESS version information is printed and the Distributed Data 

Interface (DDI) [11] is initialized. Based on the user configuration during the compilation 

step, DDI choose to use TCP/IP sockets, MPI, or other communication libraries for 

communication. 

Next, the calculation type, molecule coordinates, basis sets and other user input 

options are read from an external input file and the corresponding common blocks are 

initialized based on those inputs. Depending on the type of computation, the execution 

follows different branches, such as energy, gradient, Hessian, optimize, or saddle point. 

These computation branches are not independent from each other; one computation branch 

may overlap another branch. For example, a gradient computation needs to compute the 

energy first, so the route for the gradient branch will first go through the energy branch and 

then calculate the gradient. At the end of a computation, the control returns to the main 

subroutine for finalizing computations, cleaning up memory and finalizing the 

communication layer.  
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Main: initialize variables and 
the communication layer.

Main: finalize memory and the 
communication layer.

Choose a branch from the list: 
energy, gradient, Hessian, 
optimization, etc.

gamess_start

gamess_read_input

gamess_end

gamess_get_energy

gamess_get_gradient

gamess_get_hessian

Read in basis sets, molecule 
coordinates and other user 
options.

… …

Figure 3. The execution sequence of the GAMESS main subroutine has four parts, 
shown on the left-side. Several wrapper functions (the right-side) are created by dividing 
the sequential main subroutine into smaller functions. 

2.2.2 DDI 
In the DDI communication model, two processes are normally assigned to a CPU, 

with one process performing the computational tasks, while the other exists solely to store 

and serve requests for the data associated with the distributed array [11]. There are some 

cases, in which a data server is not required, such as when using DDI over one-sided message 

libraries 1 . Also, with the latest version of DDI, the data server is not required when 

MPI/MPI2 or ARMCI is used as a communication mean2. In Section 2.2.2, I only consider 

the cases when the data server is needed, since the design of compute process/data server 

is a special feature in DDI and is hard to understand.  

On a SMP machine or cluster (Figure 4), all the DDI processes (both compute and 

data server processes) within a node have direct access to all distributed array segments in 

the shared memory of that node. Thus, each compute process and data server can use system 

shared memory operations, such as copy or paste, locally to access the portion of a 

distributed array in its local shared memory without using any parallel communication 

                                                 
1 DDI relies on LAPI or SHMEM libraries rather than TCP/IP on some high-end parallel systems 
2 For this version of DDI, only the ARMCI model has been used in the official distribution of the GAMESS program  
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mechanisms. Depending on the platform, communications between compute processes and 

data servers among different nodes occur either via TCP/IP sockets connections or MPI/MPI-

2 [12]. When DDI uses TCP/IP sockets for communication, the DDI kickoff program is used 

for starting the required number of processes on every requested machine in the cluster that 

will run the job. If MPI/MPI-2 is used as the communication mechanism, then mpirun (or 

mpiexec) is used to start GAMESS processes. 

Figure 4. When DDI is used on an SMP cluster, all DDI processes within a node can 
access the distributed array in the node. The communications between data servers 
among different nodes depend on the communication mechanism configured with DDI 
(i.e., TCP/IP sockets, or MPI/MPI-2) [11]. 

  
Figure 5 shows the sequence of how the DDI kickoff program starts GAMESS or 

other programs. First, the DDI kickoff program needs the program name and the host list as 

command-line arguments; the host list is a list of host machine names and the number of 

CPUs in each node. The master DDI kickoff process analyzes the host list to catch the 

information on how many compute processes and data servers reside on each host machine. 

Second, a copy of the DDI kickoff program, along with information about host machines is 

spawned on each remote host in binomial order. As soon as a copy of the DDI kickoff 

program is launched on a host node, it creates the requested number of compute and data 

server processes on that host machine. Finally, a copy of the GAMESS program, with the 

host machine list, socket ports, host machine and process identities as the command-line 
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arguments, starts on each computer and data server process. The TCP/IP socket connections 

between a DDI kickoff process and a compute or data server process on the same host 

machine is created after the program starts the DDI initialization procedures. The DDI 

kickoff process on each host machine will wait for each compute and data server process to 

check in by listening to TCP/IP socket connections. As soon as all compute and data server 

processes are checked in, the communication is established for all compute and data server 

processes. 

 

Figure 5. The numbers along with the arrows show the sequence of how the DDI kickoff 
program starts the remote DDI kickoff processes. First, the DDI kickoff program starts 
the master DDI kickoff process (the white one) in Node 0. Then, it starts a copy of remote 
DDI kickoff process (the blue one) in Node 1. Both DDI kickoff processes in Node 0 and 
Node 1 will send commands to start the remote DDI kickoff processes (the yellow ones) 
on Node 2 and Node 3. Next, all the DDI kickoff processes will start the remote DDI 
kickoff processes in other Nodes if needed. The same procedure will continue until all the 
required nodes have a copy of DDI kickoff program running. Finally, each copy of the 
DDI kickoff program will create one compute process and one data server process on 
each CPU and GAMESS (or other programs) will be running in each compute/data server 
process. 
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CHAPTER 3.  COMPONENTS IMPLEMENTATION FOR GAMESS 
In general, the first step of componentizing a package is to create the SIDL interfaces. 

In our case, we need to extend the pre-defined chemistry interfaces in the cca-chem-generic 

package [28]. Next, the implementation files of the specified programming languages (C, 

C++, f77, f90, python, or java) are generated based on those interfaces by using Babel, the 

language interoperability tool. The auto-generated implementation files initially contain no 

customized codes; they include only some splicing banners and some auto-generated codes 

and comments. Programmers need to insert codes between splicing banners in each 

implementation file with the specified programming language; in our case C++.  During each 

compilation, those implementation files will be regenerated according to the SIDL 

definitions, but the customized codes that are inserted between splicing banners will not be 

modified. 

In addition, to componentize a large-scale FORTAN 77 based code such as 

GAMESS, wrapper functions are necessary as a bridge between CCA interfaces and the 

native GAMESS code. Since there is no object-oriented design in the GAMESS code, it is 

difficult for the implementation of GAMESS CCA components to utilize GAMESS 

subroutines directly. The use of wrapper functions divides GAMESS subroutines into smaller 

and less interleaving functions and therefore makes the componentization possible. 

However, simply implementing the chemistry interfaces is not enough for GAMESS 

to run under the CCA framework, since GAMESS relies on DDI to start the computation, 

either sequential or parallel. We first need to construct communication models that allow 

DDI to run under the CCA framework. When DDI relies on TCP/IP as communication 

methods, the DDI kickoff program is used to kick off the corresponding program, GAMESS 

in our cases. Thus, we constructed our first communication model for the GAMESS CCA 

components: the “GAMESS/DDI” model, where the DDI kickoff program will start the CCA 

framework in each process. The GAMESS/DDI model was useful when we started 

implementing the CCA interfaces for GAMESS, since it was the easiest and the most 

straightforward way to make the GAMESS CCA components work under the CCA 

framework. The limitation of the GAMESS/DDI model is that only the programs that use 
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DDI as the communication interfaces are able to run in parallel. The second communication 

model, therefore, is created, in which DDI depends on MPI/MPI-2 as the underlying 

communication layer. We call the second model the “GAMESS/DDI/MPI” model. In this 

model, the MPI startup program is used to kickoff the required processes and any programs 

that use MPI are able to run in parallel.   

In this section, I will introduce several commonly used CCA chemistry interfaces that 

defined in the cca-chem-generic package; followed by the detailed description and analysis 

of the two communication models for GAMESS CCA components; finally, the 

implementation procedure of several GAMESS CCA components will be demonstrated in 

details. 

3.1 CCA Chemistry Interfaces 
Most quantum chemistry programs perform fundamental chemistry calculations. 

Although existing chemistry packages may have a lot of overlapping functionalities, some of 

them may be more efficient in certain calculations while others may provide special 

functionality. The CCA provides an environment for different quantum chemistry programs 

to communicate with each other, and opens the possibility to utilize the best of each package. 

The CCA Chemistry group [28] already integrates several quantum chemistry programs, 

optimization solver packages, and parallel data management packages to perform geometry 

optimizations.  

A set of chemistry interfaces are defined in the cca-chem-generic package [28] that 

each chemistry package can implement to create chemistry components and classes. In the 

design of those chemistry interfaces, the interface for a “component” usually ends with 

“FactoryInterface” and the corresponding component usually acts as a driver to return 

references to some classes, while a “class” usually provides real computations. The 

implementation of a component is only different from the implementation of a class in that a 

component also needs to implement the gov.cca.Component and gov.cca.Port interfaces. 

ModelInterface & ModelFactoryInterface.  The ModelInterface declares the 

primary functions in quantum chemistry computations, such as the evaluation of molecule 

energies, gradient and Cartesian Hessians. The ModelFactoryInterface declares methods to 
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provide model options and initializes the model class. Basically, a ModelFactory component 

(implements ModelFactoryInterface) will be initialized with the user input options, such as 

the type of theory, the basis sets, etc. The get_model mothod could then be invoked to get a 

model class (implements ModelInterface). The get_energy, get_gradient, and get_hessian 

methods are three primary methods for a model class to perform those chemistry calculations. 

MoleculeInterface & MoleculeFactoryInterface.  The MoleculeInterface declares 

functions for gathering information of a molecule, such as Cartesian coordinates and atomic 

number. The MoleculeFactoryInterface declares functions to instantiate molecule classes 

[28]. The cca-chem-generic package provides the implementation for the 

Chemistry.MoleculeFactory component (implements MoleculeFactoryInterface) and the 

Chemistry.Molecule class (implements MoleculeInterface) for all packages to use.  

Integral evaluation interfaces.  There are four core interfaces for integral 

computations:  IntegralEvaluator1Interface for 1-center integrals, 

IntegralEvaluator2Interface for 2-center integrals, IntegralEvaluator3Interface for 3-center 

integrals and IntegralEvaluator4Interface for 4-center integrals. We call any classes that 

implement the above interfaces integral evaluators. Another core interface is 

IntegralEvaluatorFactoryInterface, which serves as a driver that returns references to the 

integral evaluators. An integral evaluator factory that implements 

IntegralEvaluatorFactoryInterface usually also extends the gov.cca.Component and 

gov.cca.Port interfaces and is used to provide integral evaluators for each chemistry package. 

Figure 6 shows the relationship among those five core integral interfaces and the three 

chemistry packages. 
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Figure 6. Each chemistry package can implement the IntegralEvaluatorFactoryInterface 
to provide an integral evaluator factory component and implement one or more of 
IntegralEvaluatorNInterface (N=1, 2, 3 and 4) to provide the integral evaluatorN classes. 
The integral evaluator factory component is a driver component to return the references to 
integral evaluators for integral computations. 

An integral evaluator interface provides a compute method for calculating integrals 

for a shell multiplet. For example, the compute method of IntegralEvaluator2Interface is for 

computing a shell doublet, which is illustrated below, 

/** Compute a shell doublet of integrals. 
@param shellnum1 Gaussian shell number 1. 
@param shellnum2 Gaussian shell number 2. */ 
void compute(in long shellnum1, in long shellnum2); 

Where two indexes of Gaussian shells are passed as parameters and the resulting integrals are 

stored in a buffer that is initialized by the integral evaluator. Similarly, the compute method 

of IntegralEvaluator4Interface needs four indexes of Gaussian shells as parameters to 

compute integrals for a shell quartet. 

Several auxiliary interfaces.  Several auxiliary interfaces are also important to the 

initialization of integral evaluators:  CompositeIntegralDescrInterface, MolecularInterface, 

AtomicInterface and ShellInterface. The IntegralDescrInterface is used to configure integral 

evaluators, which stores the information such as the type of integrals and derivative centers. 

The MolecularInterface provides a molecule (implements MoleculeInterface) object and the 

atomic basis data for a molecular Gaussian basis set, which includes the atomic basis set for 

any atom number of the molecule. The AtomicInterface provides the shell data for an atomic 

Gaussian basis set (AO), which provides a Gaussian shell for any given shell number. The 

ShellInterface provides the primitive and contraction data for a Gaussian shell [24]. Through 
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these interfaces, the information required for computing integrals can be passed from one 

package to another package without initializing every package. Figure 7 shows an example of 

how molecule coordinates and the basis set are stored in CCA integral objects. 

Molecular

Atomic0: O

Atomic1: H

Atomic2: H

Shell0: S (primitive 1, 2, 3)

Shell1: L (primitive 4, 5, 6)

Shell0: S (primitive 7, 8, 9)

Shell0: S (primitive 10, 11, 12)

Molecule (x, y, z coordinates)

SHELL TYPE  PRIMITIVE        EXPONENT     CONTRACTION COEFFICIENT(S)
O

1         S           1                       130.7093214       0.154328967295
1         S           2                       23.8088661 0.535328142282
1         S           3                       6.4436083 0.444634542185
2         L           4                       5.0331513 -0.099967229187    0.155916274999
2         L           5                       1.1695961 0.399512826089    0.607683718598
2         L           6                       0.3803890 0.700115468880    0.391957393099

H
3         S           7                       3.4252509 0.154328967295
3         S           8                       0.6239137 0.535328142282
3         S           9                       0.1688554 0.444634542185

H
4         S          10                      3.4252509  0.154328967295
4         S          11                      0.6239137  0.535328142282
4         S          12                      0.1688554  0.444634542185

ATOM        ATOMIC                            COORDINATES (BOHR)
CHARGE             X                     Y  Z

O              8.0            0.0000000000    0.0000000000 0.1239321808
H              1.0            1.4305200000    0.0000000000  -0.9834468192
H              1.0           -1.4305200000    0.0000000000    -0.9834468192

Figure 7. When using the water molecule and the “STO-3G” basis set as inputs, the 
information of molecule coordinates and the molecular basis sets in the GAMESS program 
is shown in the upper table. The upper block of the table shows the X, Y, Z coordinates of 
the water molecule. The bottom block of the table contains several columns. The 
information shown in the order from left to right is: the atomic symbols, the index of 
Gaussian shells, the Gaussian shell types, the primitive Gaussian shells, the exponents and 
contraction coefficients.  Following each atom symbol is a block of Gaussian shells 
associated with it. The corresponding CCA integral components that store the same 
information are shown in the lower graph. The molecule coordinates are stored in a 
Molecule object (implements MoleculeInterface). The basis set information is stored in 
three Atomic (implements AtomicInterface) objects with the references to the corresponding 
Shell (implements ShellInterface) objects. A Molecular (implements MolecularInterface) 
object contains the references to the Molecule object and three Atomic objects. 
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An example of applications.  Figure 8 shows an application example of the chemistry 

components under the CCA framework. The MoleculeFactory component, ModelFactory 

component and a driver component are instantiated under a single CCA framework. The 

MoleculeFactory component can get the reference of the Molecule class through the Provides 

port of the MoleculeFactory component and invoke the methods of the Molecule class. 

Similarly, the driver component can get the reference of the Model class that instantiated and 

initialized by the MoleculeFactory component, and then invokes the methods of the Model 

class, such as get_energy, get_gradient, and get_hessian. The driver component will also 

output calculation results returned from the Model class. 

 

Figure 8.  Port A is a Provides port that is implemented by the MoleculeFactory 
component, through which the reference of the Molecule class is passed to other 
components. Port C is a Provides port that implemented by the ModelFactory component, 
through which the reference of the Model class is passed. Port B and port D are Uses ports 
that are registered by the ModelFactory component and the driver component for using 
the services provided by other components.

3.2 Mechanisms of Creating GAMESS CCA Components 
GAMESS requires DDI as the communication library when running in both 

sequential and parallel. DDI mainly relies on TCP/IP sockets for communication, and can 

also use MPI/MPI-2 as its underlying communication mechanisms. When a GAMESS CCA 
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component is instantiated under a CCA framework, it requires DDI being initialized to be 

able to use GAMESS functions. It is thus important to integrate DDI with the CCA 

framework to enable GAMESS CCA components running in both sequential and parallel.  

Since TCP/IP is the most commonly used mechanism used DDI for GAMESS that 

installed on most of architectures, we start integrating DDI and the CCA framework by using 

the TCP/IP sockets as the underlying communication methods - the GAMESS/DDI model. 

The GAMESS/DDI model works fine for the components that use DDI as the 

communication library. However, for the components that do not use DDI, the 

GAMESS/DDI model restricts them for running in parallel. For example, since the DDI 

kickoff program is required for starting DDI processes in the GAMESS/DDI model, the MPI 

startup program cannot be used for starting processes and components that rely on MPI/MPI-

2 for communications are not allowed to run in parallel.  

The GAMESS/DDI/MPI model is designed for integrating DDI with the CCA 

framework when MPI/MPI-2 is used as the underlying communication library. However, 

when the data server is required, the GAMESS/DDI/MPI model raises problems for some 

components that depend on all MPI processes for computations. Since half of processes will 

be assigned as data servers, purely serving the calls for communication requests, there are 

only half of processes performing computation tasks. When a component needs to perform a 

global computation, such as a global sum calculation, they will wait for the results from the 

half of processes (data servers) that will never perform the global calculation, and a deadlock 

occurs.  

This problem can be avoided if no data server is required, all of the allocated 

processes being used for computations. There is a version of DDI (newly developed) does 

not require the data server when relies on MPI/MPI-2 or ARMCI. We will introduce 

GAMESS/DDI/MPI model in both cases: the cases when the data server is required and 

when it is not required.   

3.2.1 The GAMESS/DDI mechanism 

When more than one CPU is required, the DDI kickoff program starts a compute 

process/data server pair for each CPU. An instance of the CCA framework is started on each 

compute process. The data servers are put to sleep and purely wait for the communication 
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requests from compute processes. Each instance of the CCA framework will initialize 

components and the connections among components based on user inputs. All the 

components and connections contained in a framework are identical on each compute 

process. The GAMESS CCA components contained in the framework of each compute 

process will initialize the DDI communication layer, in which only the components or the 

underlying programs that use DDI as the communication mechanism are able to run in 

parallel. The CCA framework or other components under the same framework cannot run in 

parallel, since the communication mechanisms used by the CCA framework or other 

components, such as MPI/MPI-2, will not be initialized. 

Figure 9 shows a simple example of the GAMESS/DDI model under the CCA 

framework. On a SMP cluster with 4 nodes, the DDI kickoff process (section 2.2.2) on each 

node starts one compute process/data server pair for each CPU of that node, and then each 

compute process starts an instance of the CCA framework. The CCA framework, the 

component instances and their connections that are contained in the CCA framework are 

identical for all compute processes. When the DDI initialization procedure succeeds and the 

communication layer of DDI is established, the GAMESS CCA components within the same 

node can directly access the distributed arrays that are stored in the local shared memory of 

that node, and the GAMESS CCA components among different nodes can communicate with 

each other by using TCP/IP. The underlying communication operations are performed by the 

data server that associated with each compute process. 
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Node 1 Node 0 

 
The major difficulty we encountered in designing this model is passing command-line 

arguments, which contain the information for initializing the DDI program (Section 2.2.2), 

from the DDI kickoff program to the GAMESS CCA components. When the DDI kickoff 

program starts the CCA framework, the command-line arguments are passed to the CCA 

framework, and there is no way to pass the arguments directly to a component under the 

CCA framework. Without the command-line arguments, DDI initialization cannot connect 

with the corresponding DDI kickoff program in that host machine, and the communication 

layers cannot be established correctly. Therefore, the “Stovepipe” Library provided by the 

CCA framework is used to convey the argument list from the CCA framework to the 

GAMESS CCA components. 

Even though the GAMESS/DDI model works fine for GAMESS CCA components, it 

prohibits the components from other packages that do not use DDI from running in parallel. 

The GAMESS/DDI/MPI model is necessary for GAMESS to interact with other packages 

through the CCA framework. 

Compute 
Process

 Process 1

 A B  C 
Compute 
Process

 Process 0 

 A B  C 

 CPU 0  CPU 1 

 Shared 
Memory 

Compute  
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 Process 3 

 A B  C 
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Memory Data  

 CPU 2  CPU 3 

Server  Process 5  Process 6  Process 7  Process 4 

TCP / IP 

Figure 9. Under this model, one compute process/data server pair is created for each 
CPU. The CCA framework (green part) is initialized on each compute process. The data 
servers are put to sleep and purely waiting for the requests for the communication from 
compute processes. A is the driver component, which gets the Model object from B (the 
GAMESS component) through Provides/Uses ports. C is the MoleculeFactory 
component, which provides the molecule object to the GAMESS CCA component. The 
yellow area is the portion of distributed arrays that stored in the local shared memory of a 
node, where the compute processes and data server processes can directly access. The 
communication of compute processes among different nodes is through the TCP/IP 
sockets connections. 
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3.2.2 The GAMESS/DDI/MPI mechanism 

With the data server  

The current version of DDI (the version is used with GAMESS) requires the data 

server when relies on the mix of MPI/TCP. In this model, the MPI startup program will 

initialize the required processes, where half of allocated processes are specified as "compute 

process" and half of processes are assigned as "data server". For example, when running the 

CCA framework with 2n processes, the DDI initializing procedure will use only n processes 

for computations and n processes for the communication. The processes within the same 

node can direct access to the portion of distributed arrays in the local shared memory of that 

node. This is different from the GAMESS/DDI model in two ways. First, both MPI and 

TCP/IP are used for communication. MPI is used to pass the actual data, such as a part of 

distributed arrays, when a process tries to access the portion of the distributed arrays that is 

not in its local shared memory. The TCP/IP is used for some smaller messages, such as a 

system call for waking up a sleeping process. The mixed message passing method is used, 

since most MPI implementations require a process to continuously check for the incoming 

calls. Thus, using pure MPI will make a data server compete for CPU resources with 

compute processes. In the TCP/IP implementation, while waiting for a request, each data 

server process is put to sleep, thus essentially yielding full CPU access to the compute 

process [11]. Therefore, the mixed MPI/TCP model for DDI should out-perform using pure 

MPI. 

The GAMESS/DDI/MPI model for GAMESS CCA components is based on the 

MPI/TCP model for DDI. This model allows GAMESS and other programs to run in parallel 

through MPI/MPI-2 calls when running under the same CCA framework. However, with the 

requirement of the data server by DDI, the other programs may have trouble to run correctly 

in parallel since half of allocated processes have been put to sleep. For example, the MPQC 

program knows that the number of processes in MPI_COMM_WORLD is 2n, while only n 

of processes are performing computations. When MPQC doing a parallel calculation, such as 

the global sum, it will by default use all 2n processes for the computation, but the number of 

actual processes that running MPQC components is only n; the other n processes are assigned 

as data servers and do no real computations. This will cause the deadlock in MPQC for 
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waiting for the results from n data servers that will never perform the task.  

 

Without the data server 

A newer version of DDI has eliminated the requirement of the data server when using 

MPI/MPI-2 or ARMCI as the underlying communication library. When this version of DDI 

relies on MPI/MPI-2, it purely uses MPI/MPI-2 calls for communication, not depending on 

TCP/IP. When using the older version of DDI with MPI/MPI-2, half of the allocated 

processes are assigned as data servers. If GAMESS works with other programs that use 

MPI/MPI-2, the programs other than GAMESS may enter the deadlock when they expect 

"data servers" should do the same computations as "compute processes" do, since data 

servers are used purely for communication, no computations are allowed. By eliminating the 

Node 0 

Compute 
Process

 Process 1

 A B C 
Compute 
Process

 Process 0 

 A B  C 

 CPU 0  CPU 1 

 Shared 
Memory 

Compute  
Process 

Node 1 

Compute 
Process

 Process 3 

 A B  C 
Compute 
Process

 Process 2

 A B C 

 CPU 2  CPU 3 

 Shared 
Memory 

Data  
Server  Process 4  Process 5  Process 6  Process 7 

TCP/IP & MPI/MPI-2 

Figure 10.  Under the GAMESS/DDI/MPI model, half of the processes is assigned as 
compute process and half of the processes is specified as data server. The CCA framework 
(green part) is initialized on each compute process. The data servers are put to sleep and 
purely waiting for the requests for the communication from compute processes. A is the 
driver component, which gets the Model object from B (the GAMESS component) 
through Provides/Uses ports. C is the MoleculeFactory component, which provides the 
molecule object to the GAMESS CCA component. The yellow area is the portion of 
distributed arrays that stored in the local shared memory of a node, where the compute 
processes and data server processes can directly access. The communication of compute 
processes among different nodes is through TCP/IP sockets or MPI/MPI-2. Components 
A and C are able to communicate among compute processes through MPI/MPI-2.  

MPI/MPI-2 

MPI/MPI-2 
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data server when relying on MPI/MPI-2, DDI is able to work with other programs without 

the restriction caused by the data server. It thus allows GAMESS to cooperate with other 

programs by using MPI/MPI-2 through CCA components.

The upgraded GAMESS/DDI/MPI model for the GAMESS CCA components is 

based on the newer version of DDI when it depends on MPI/MPI-2. This model uses the MPI 

startup program to initialize the required processes. The sequences for initializing the CCA 

framework and GAMESS computations are similar with the GAMESS/DDI/MPI model with 

the data server, except that all of the processes are performing computations (no data server). 

The CCA framework and components that use MPI/MPI-2 as the communication method 

will be able to run in parallel by using this model without any restrictions from 

GAMESS/DDI.  

3.3 GAMESS CCA Components 
GAMESS has implemented several chemistry components, including 

GAMESS.GaussianBasisMolecular, GAMESS.GaussianBasisAtomic, 

GAMESS.GaussianBasisShell, GAMESS.ModelFactory, GAMESS.Model,  

GAMESS.IntegralEvaluatorFactory, GAMESS.IntegralEvaluator2, and 

GAMESS.IntegralEvaluator4. To be able to use GAMESS functions, the wrapper functions 

are required as bridges between GAMESS and the CCA interfaces. There are four groups of 

wrapper functions have been created according to their functionalities: (1) initializing the 

GAMESS program and DDI; (2) initializing the basis set information; (3) calculating energy, 

gradient and Hessian; (4) calculating 1e- and 2e-integrals. The implementation of those 

wrapper functions is different from cases to cases, depending on the implementation of the 

corresponding GAMESS subroutines and the SIDL interfaces for GAMESS CCA 

components. 

The implementation of GAMESS CCA components is straightforward for most of 

methods, just invoking the corresponding wrapper functions. The wrapper functions can be 

considered as a part of the implementation for GAMESS CCA components. The 

implementation files in the server-side for GAMESS CCA components are initially empty, 

being auto-generated by BABEL based on SIDL interfaces. To insert codes into those 
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implementation files, the corresponding wrapper functions are invoked for performing 

specific calculations in GAMESS. For example, to implement get_energy method of 

GAMESS.Model class, the gamess_get_energy wrapper function is called inside the 

get_energy mothod. Thus, the wrapper functions can be considered as the part of 

implementation for GAMESS CCA components, or as the extra layer of function calls 

between the component implementation files and the original GAMESS subroutines. 

In this section, we will present the procedure of constructing wrapper functions, the 

implementation of the GAMESS CCA components, and finally the structure of GAMESS 

CCA components. 

3.3.1 The design of GAMESS wrapper functions 
The layer of wrapper functions is between the CCA interfaces (the implementations 

for GAMESS CCA components) and the original GAMESS codes. The wrapper functions 

are created based on CCA SIDL interfaces and the underlying structure of GAMESS 

subroutines. When a method defined in a SIDL interface that require the specific information 

from the GAMESS program, such as the exponent for a primitive Gaussian, a corresponding 

wrapper function is created for reading the exponent from the associated common block in 

the GAMESS program. The method in CCA side (the implementation files) will invoke this 

wrapper function, instead of directly reading the common block from the GAMESS program. 

There are several reasons that we require wrapper functions. 

First, the GAMESS program adopts a top-down programming model and there is no 

object-oriented or modularized design concepts built in. A computation (a branch) is usually 

started from a driver subroutine and continued with several sub-branches based on the user 

input option or the default settings. The codes for those sub-branches usually interleave with 

each other or depend on the results computed by branches. When a CCA method needs to 

access a sub-problem, instead of the whole computation, there are no subroutines that we can 

use directly to calculate the sub-problem without touching common blocks or codes in other 

subroutines. These tightly interleaving codes for GAMESS computations make the 

componentizing procedure a hard task. If we reorganize the part of codes for solving a sub-

problem and group them into wrapper functions with the modularized design, it is possible 
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for us to invoke these wrapper functions from the CCA method. Otherwise, there is no way 

that we can componentize a computation in GAMESS. Moreover, we can test the wrapper 

functions for a GAMESS computation without touching the CCA implementations, and we 

only need to test if the invoke/return processes are correct.  

Second, the wrapper functions can be accessed easily through the function headers for 

multiple times without touching the real codes. When a newer version of GAMESS is 

distributed, the corresponding codes in wrapper functions are also required to be upgraded. 

We need to manually modify/test wrapper functions or create an automatic tool to perform 

this task. The whole concept of CCA is for the reusability and interoperability between 

software systems. It would be easier to manage the code if we use a GAMESS computation 

through the wrapper functions, instead of inserting GAMESS codes directly into the CCA 

implementation files.  

Finally, the current GAMESS CCA components are implemented in C++, and the 

GAMESS code is written in FORTRAN 77. The wrapper functions are necessary as the 

middle layer of the function calls in between the C++ component implementation and the 

FORTRAN 77 GAMESS program. The following details several strategies we used for 

constructing wrapper functions. 

Initializing GAMESS and DDI  

In Section 2.2.1, the sequence of GAMESS main subroutine is divided into four parts: 

(1) initializing variables and the communication layer; (2) read in user options; (3) choose a 

computation branch according to the type of the computation; (4) finalizing memory and 

communication layer. The right column of Figure 3 shows how we divide and wrap the 

original sequential main subroutine into several smaller wrapper functions. The wrapper 

function gamess_start is for initializing GAMESS computation and the communication layer 

(DDI will be initialized); gamess_end is for finalizing memory and DDI. The construction of 

these two wrapper function is simple: basically just wrapping the codes that corresponding to 

each part and group them into two subroutines. However, parts of the DDI code have to be 

modified depending on which model is used: the GAMESS/DDI model or the 

GAMESS/DDI/MPI model. 
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When using GAMESS/DDI/MPI model, the MPI initialization method MPI_Init will 

be invoked during the initialization of DDI. However, the CCA framework will also call 

MPI_Init at the beginning. Since MPI_Init cannot be called more than once, we have to 

modify DDI to ignore the call to the MPI_Init method. A flag is added before the call to 

MPI_Init, so that MPI_Init will not be executed if it has already been invoked. 
    int flag; 
    MPI_Initialized(&flag); 
    if (!flag) {  
      if(MPI_Init(&argc,&argv) != MPI_SUCCESS) { 
         fprintf(stdout," DDI: MPI_Init failed.\n"); 
         fflush(stdout); exit(911); 
      } 

When using the GAMESS/DDI model, the DDI initialization requires a list of 

command-line arguments, such as process id, port number, hostname, etc, in the DDI-known 

format, that are passed from the DDI kickoff program. When the GAMESS program works 

alone (without using the CCA framework), the list of command-line arguments will be 

passed from the DDI kickoff program to the GAMESS main subroutine, and then passed to 

the DDI initialization method DDI_Init. However, when the GAMESS program works with 

the CCA framework, the command-line arguments will be passed from the DDI kickoff 

program to the CCA framework. There is no way that the command-line arguments will be 

directly passed from the CCA framework to DDI_Init.  

By using the StovePipe library in the CCA framework, the command-line arguments 

can be read by GAMESS CCA components and then passed to DDI_init. Since the StovePipe 

library requires a special format for storing the command-line arguments, such as “--

argument_name1 --argument_value1 … --argument_nameN --argument_valueN”, the format 

of the command-line arguments that created in the DDI kickoff program have to comply with 

the format that the StovePipe library requires. The format for the arguments will be 

converted back to the format that DDI knows later by a GAMESS CCA component and be 

passed to the method DDI_Init from the GAMESS CCA component.  

Energy, gradient and Hessian calculations.  For the third part of the GAMESS 

main subroutine (the third rectangle from above to the bottom at the left-hand column in 

Figure 3), several wrapper functions are created: gamess_get_energy, gamess_get_gradient 

and gamess_get_hessian. This list can be expanded by creating a wrapper function for each 
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computation type. Those wrapper functions are constructed by setting the “run type” to the 

corresponding type of computation, such as energy, gradient, Hessian, and optimization. The 

final results of the computations will be read from the associate common blocks or the direct 

access files (where GAMESS stores those results).   

Initializing the basis set information.  GAMESS stores the basis set information, 

such as primitives, contraction coefficients, and exponents, in the common blocks NSHEL 

and INFOA (Appendix B has detailed description about the common block NSHEL). A 

wrapper function has been created for each element in the items of the common blocks.  
      COMMON /NSHEL / EX(MXGTOT),CS(MXGTOT),CP(MXGTOT),CD(MXGTOT), 
     *                CF(MXGTOT),CG(MXGTOT),CH(MXGTOT),CI(MXGTOT), 

(MXSH),      *                KSTART(MXSH),KATOM(MXSH),KTYPE(MXSH),KNG
   *                KLOC(MXSH),KMIN(MXSH),KMAX(MXSH),NSHELL   

 
      COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB, 
     *                ZAN(MXATM),C(3,MXATM),IAN(MXATM) 
For example, the gamess_ex wrapper function will return the exponent with the 

specified primitive. 
/** Get the exponent with the specified index of primitives */ 
void gamess_ex_(int64_t* index, double* answer); 

The integral computations 

GAMESS computes two kinds of AO integrals, one- and two-electron integrals. For 

Table 1. The subroutines for computing integrals 

Computation  Subroutine Description 

ONEEI the driver subroutine for the one-electron 
integral calculation GAMESS 

HSANDT calculate integrals over all shell doublets

gamess_1e_initialize initialize the one-electron integral 
calculation 

gamess_dblet_integral compute integrals for a shell doublet 

one-electron 
integral  
computation GAMESS 

Wrapper 
Functions 

gamess_1e_finalize finalize the one-electron integral 
calculation 

JANDK the driver subroutine for two-electron 
calculation GAMESS 

TWOEI calculate integrals over all shell quartets 

gamess_twoei_initialize initialize the two-electron integral 
calculation 

gamess_twoei_compute compute integrals for a shell quartet 

two-electron 
integral  
computation GAMESS 

Wrapper 
Functions 

gamess_twoei_finalize finalize the two-integral calculation 
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two-electron integrals, GAMESS provides four computational methods, each of which has its 

strength for computing different sets of shell types. By default GAMESS chooses the most 

efficient one by picking the best method for each shell quartet. Users can choose a specific 

integral code through the input options. For ease of presentation, we omit details of data 

structures and functions used in integral computations, but list only the driver subroutines for 

one- and two-electron integral calculations in the GAMESS code and the corresponding 

wrapper functions in Table 1. 

The subroutine ONEEI (Table 1) for the one-electron integral computation in 

GAMESS is for initializing one-electron integral calculation and calling the subroutine 

HSANDT to compute one-electron integrals over all pairs of Gaussian shells. A two-level 

nested loop structure is used in the subroutine HSANDT to loop over all i and j shells, where 

i and j are indexes of Gaussian shells. However, the cca-chem-generic package defines the 

compute method of IntegralEvaluator2Interface to return integrals for only one pair of shells; 

to comply with the interface we cannot just wrap the integral subroutines in GAMESS. In 

order to create a wrapper function that computes only one shell doublet while making 

minimum modification to the original GAMESS subroutine, the initialization, finalization, 

and computation steps are separated into three wrapper functions. Figure 11 shows how we 

extract the initialization procedure from ONEEI and HSANDT to form a single function for 

initializing one-election integral calculations. The computation code in HSANDT is wrapped 

into a function that calculates integrals for one pair of shells with variables (i,j) in the loops 

as parameters. The wrapper functions are invoked by the GAMESS.IntegralEvaluator2 

(implements IntegralEvaluator2Interface) class. 
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ONEEI:      Initialization  … Calculate H, S and T integrals … Other calculations

HSANDT:   Initialization   … Loop over (i,j) primitives  … Finalization

Call for H, S and T 
integral calculation

gamess_1e_initialize gamess_dblet_integral

Set i, j as parameters, 
only computing integrals 
for one shell doublet

gamess_1e_finalize

Figure 11. The componentization of one-electron integral calculations in GAMESS. 
 

The subroutine JANDK (Table 1) is the main driver for computing two-electron 

integrals. It first allocates memory for integral buffers and initializes integral calculations. 

TWOEI is then called for calculating two-electron integrals over four basis functions. 

However, the cca-chem-generic package defines the compute method of 

IntegralEvaluator4Interface to return integrals for only one shell quartet. Similarly, we need 

to create a wrapper function that computes integrals for only one shell quartet.  

 

JANDK:      Initialization … Calculating two-electron integrals … Other calculations

TWOEI:      Initialization   … Loop over (ii, jj, kk, ll) primitives … Finalization

Call for two-electron 
integral calculation

gamess_twoei_initialize gamess_twoei_compute

Set ii, jj, kk, ll as parameters, 
only compute integrals for 
one shell quartet

gamess_twoei_finalize

Figure 12. The componentization of one-electron integral calculations in GAMESS

Combining the initialization steps in JANDK and TWOEI (Figure 12), a wrapper 

function is used for initializing two-electron integrals. With the same strategy as 

componentizing one-electron integral computations, the part that loops over four basis 
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functions is wrapped as a function to compute one shell quartet with (ii,jj,kk,ll) as parameters. 

Finally, a wrapper function is created for finalization of two-electron integral calculations. 

The reason we separate initialization steps from the computation steps is to reduce the 

overhead of the wrapper functions. The wrapper functions are designed to compute integrals 

for a shell doublet or a shell quartet, so they can be called ( )2NO  times for one-electron 

integral calculation and ( )4NO  times for two-electron integral calculation. Without separating 

the initialization step from computation steps, there would be a significant amount of 

overhead for computing integrals. 

3.3.2 The design of GAMESS CCA components  
The implementation of GAMESS CCA components is straightforward as long as the 

associated wrapper functions have been constructed. The GAMESS.ModelFactory component 

implements ModelFactoryInterface, and is able to return the GAMESS.Model class. The 

get_energy, get_gradient and get_hessian methods of the GAMESS.Model class will invoke 

the wrapper functions gamess_get_energy, gamess_get_gradient and gamess_get_hessian. 

Through the ModelFactoryInterface Uses/Provides port, the energy, gradient, and Hessian 

calculations provided by GAMESS can be used through the CCA interfaces. Similarly, the 

GAMESS.IntegralEvaluatorFactory component implements 

IntegralEvaluatorFactoryInterface, and is able to return the GAMESS.IntegralEvaluator2 

and GAMESS.IntegralEvaluator4 classes for GAMESS integral computations (Figure 6). The 

compute method of the GAMESS.IntegralEvaluator2 class invokes the wrapper function 

gamess_dblet_integral for computing a shell doublet and the GAMESS.IntegralEvaluator4 

class calls the wrapper function gamess_twoei_compute for calculating a shell quartet. 

Through the IntegralEvaluatorFactoryInterface Uses/Provides port, the functionality of the 

integral calculation can be shared between GAMESS and other chemistry packages.  

3.3.3 The structure of GAMESS CCA components 
GAMESS stores basis set and molecule coordinates in common blocks, through 

which the values required for integral computations - the indexes of Gaussian shells, 

exponents, contraction coefficients, and Cartesian coordinates - are shared among different 
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subroutines, and integral calculations can be performed. The GAMESS program initializes 

common blocks, memory, and communications by reading the user input options from an 

input file. Most of the input options in GAMESS have default values, but the basis set and 

molecule coordinates are required for all input files. The input file is read for many 

subroutines during a computation; without this file there is no way GAMESS can be 

initialized and perform computations. Even though the GAMESS components we developed 

are based on the interface for a “theoretically independent” component, the underlying 

wrapper function depends on the original design for initializing the GAMESS computations.  

To deal with the common “input file” issue, our approach is to have the 

GAMESS.ModelFactory component create a disk file with the format of the GAMESS input 

file, based on the user options that are passed from the CCA parameters. This disk file will be 

passed to the GAMESS wrapper function gamess_start to initialize GAMESS computations. 

Figure 13 shows the dependencies among GAMESS CCA components, GAMESS wrapper 

functions and the GAMESS program. GAMESS CCA components are built on top of 

GAMESS wrapper functions, which wrap the functionalities of GAMESS into non-

interleaving functions. To construct an application of GAMESS CCA integral computations, 

a GAMESS.ModelFactory component and a GAMESS.IntegralEvaluatorFactory component 

(implements IntegralEvaluatorFactoryInterface) are instantiated in a CCA framework. This 

framework is middleware implementing a CCA model [14]. The GAMESS.ModelFactory 

component reads user input options from CCA parameters, creates a GAMESS input file on 

disk based on those input options and calls the wrapper function gamess_start to read the 

input file and initialize GAMESS common blocks and communications. The 

GAMESS.ModelFactory component also provides a GAMESS.Model class (implements 

ModelInterface) for calculating the energy, gradient and Hessian. After GAMESS 

computations are initialized successfully, the GAMESS.IntegralEvaluatorFactory component 

is able to provide the GAMESS.IntegralEvaluator2 class (implements 

IntegralEvaluator2Interface) and the GAMESS.IntegralEvaluator4 class. 
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GAMESS Wrapper Functions

The GAMESS Program

GAMESS
ModelFactory

ModelFactory
Interface

IntegralEvaluatorFactoryInterface

User input options

Input file

CCAFFEINE Framework

Create an 
input file

Read
input file

CCA 
Interface

Component

ModelInterface

GAMESS
Model Class

GAMESS
IntegralEvaluatorFactory

IntegralEvaluator2
Interface

IntegralEvaluator4
Interface

GAMESS
IntegralEvaluator2

GAMESS
IntegralEvaluator4

Figure 13. GAMESS CCA components are built on top of GAMESS wrapper functions. 
However, the initialization of GAMESS computations could not be componentized and 
relies on an input file for initializing common blocks and communications. 
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CHAPTER 4.  INTEGRATION 
The purpose of this research is to solve the interoperability of the three chemistry 

packages: GAMESS, NWChem and MPQC (more packages may be involved in the future), 

to share the functionalities among those packages. Through the pre-defined CCA chemistry 

interfaces, a package is able use the functionalities provided in other packages under the 

CCA framework. This resource sharing enables a new computation being constructed quickly 

by choosing components from one or several preferred packages.  

However, the integration of components from the existing packages is not as easy as 

integrating components that are created from scratch. The components from GAMESS and 

NWChem are based on the large legacy codes that are mostly written in FORTRAN 77. The 

functionalities, parallel mechanisms and underlying structures of those components are 

restricted by the design of the existing legacy codes. Even for the components that perform 

the same kinds of computations but from different packages, the way of using those 

components may be different. For example, the two-electron integral computations in 

GAMESS are implemented with a load balancing mechanism that allows the tasks (integrals) 

distributed among processes evenly. Instead of using the load balance mechanism to 

parallelize the integral computation itself, both NWChem and MPQC parallelize the routines 

that call the integral computations. This makes the way of using CCA integral components 

from GAMESS different from the components provided by the other two packages.  

Theoretically, users should not worry about the underlying design of components. 

However, especially for the components constructed from the large legacy code, this is hard 

to achieve in practices. The well-designed interfaces and the set of fully tested components 

may help us to create a user-friendly, flexible, and powerful component-based software 

system for the quantum chemistry simulations.   

As a starting point for integrating the three chemistry packages, we choose to 

integrate the integral calculations. We use the GAMESS.ModelFactory component for 

reading user input options; pass a GAMESS.GaussianBasisMolecular object to the 

MPQC.IntegralEvaluatorFactory component; calculate integrals by using the integral 

evaluators from MPQC. Since the CCA integral components for NWChem were still under 
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development at the time we constructed the integration steps, we will leave the integration 

with NWChem as one of our future works. 

To generalize the integration of the already componentized computations, such as 

energy, gradient, Hessian, and integral, we designed an interface for the “client-side” 

functions of GAMESS CCA components. The “client-side” in this research is a set of classes 

and data structures that are designed and created by using the CCA chemistry 

classes/components with specific language binding. The programmers can choose a language 

binding from the list that allowed by BABEL, such as C/C++, FORTRAN 77/90, Java, and 

Python. The corresponding language bindings for a component can be generated by using the 

BABEL tools. For example, the GAMESS.ModelFactory component is implemented in C++. 

If we need to create the “client-side” for GAMESS CCA components with FORTRAN 77, 

the “f77” binding has to be generated before the methods in the GAMESS.ModelFactory 

component can be accessed from the FORTRAN 77 “client-side” functions.  

The section 4.1 will show the integration steps for integral calculations by GAMESS 

and MPQC CCA components. The section 4.2 will introduce the design mechanism of the 

GAMESS client-side and the possible issues for implementing the client-side interfaces. 

4.1 The Integration of the Integral Calculation 
We have already introduced the implementation details of GAMESS CCA integral 

components and the structure of using GAMESS CCA components. To demonstrate the 

procedure of integrating the integral calculation over the three chemistry packages, we need 

to have an overall knowledge of the CCA integral components from both MPQC and 

NWChem. Then, the procedure of integrating GAMESS and MPQC to perform the two-

electron integral computation will be presented. 

MPQC CCA integral components 

MPQC components are derived in a straightforward manner from the class libraries 

underlying the MPQC package. For example, the IntegralEvaluator4 CCA object simply 

wraps a class derived from sc::TwoBodyInt. On the client side, CCA integral factories are 

wrapped by the sc::IntegralCCA class and CCA evaluators, such as IntegralEvaluator4, are 

wrapped by the appropriate evaluator class, such as sc::TwoBodyIntCCA. Thus, MPQC has 
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no code that directly uses CCA integral interfaces, with all function calls to CCA objects 

occurring through a wrapper object implementing an abstract interface. There are two 

integral evaluator factories available within MPQC, IntV3EvaluatorFactory and 

CintsEvaluatorFactory, providing access to the native IntV3 integral package and the Libint 

package [15]. Details about the design of MPQC integral components are described in a 

previous publication [16]. 

NWChem CCA integral components 

As with the GAMESS code, the NWChem component software essentially consists of 

wrappers to access the capabilities of the NWChem integral API. Currently, the 

NWChem.ModelFactory needs to be created and initialized so that NWChem has the proper 

information concerning the basis sets and the molecular configuration.  It is anticipated that 

this will change in the future.  Once the Model Factory has created a Model, then NWChem 

has also initiated its other functionalities such as memory management (global array 

allocation), communication protocols and run-time database management.  This is currently 

essential for the integral components to function properly. 

A significant portion of the CCA integral interface is similar to the NWChem API 

and there is a fairly direct one-to-one mapping. However, the IntegralDescrInterface is 

significantly different with no analog in NWChem, so the specifics of the types of 

computations that the API is to perform are kept in the components and translated to the 

appropriate API calls. 

The integral termination is straightforward.  However, the appropriate Model also 

needs to be terminated to end all of the NWChem processes. Since NWChem CCA 

components are currently being upgraded from working with the older version of Babel tools 

and the CCA framework to working with the newest version of those packages, the 

integration of GAMESS and NWChem will be part of our future work. 

Interoperability between GAMESS and MPQC 

To test interoperability between packages, we pass the basis set information, the type 

of integrals, and molecule coordinates from a GAMESS.ModelFactory component to a 

MPQC integral evaluator factory component by invoking a get_evaluator method. For 
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example, the SIDL definition for the get_evaluator4 method of 

IntegralEvaluatorFactoryInterface is showed as follows: 

/** Get a 4-center integral evaluator 
    @param desc Integral set descriptor 
    @return 4-center integral evaluator */ 
IntegralEvaluator4Interface get_evaluator4( 
     in CompositeIntegralDescrInterface desc, 
     in MolecularInterface bs1, 
     in MolecularInterface bs2, 
     in MolecularInterface bs3, 
     in MolecularInterface bs4); 

Using MPQC integral evaluators is expected to be as straight forward as using 

GAMESS integral evaluators, as long as everything is initialized properly. For example, our 

current testing is to pass a GAMESS.GaussianBasisMolecular object to the 

MPQC.IntV3EvaluatorFactory component through the IntegralEvaluatorFactoryInterface 

provides/uses connection. If the initialization in the GAMESS.GaussianBasisMolecular 

object is correct, then the MPQC.IntV3EvaluatorFactory component should be able to return 

an integral evaluator and do the same computation as a GAMESS integral evaluator.   

The integration steps are as follows: 

(1) Instantiate a GAMESS.ModelFactory component and a 

MPQC.IntV3EvaluatorFactory component in a CCAFFEINE framework. 

(2) GAMESS.ModelFactory component reads user options through CCA 

parameters and initializes GAMESS common blocks, memory and parallel 

layers. 

(3) Create a GAMESS.GaussianBasisMolecular object and a 

CompositeIntegralDescr (implemented by the cca-chem-generic package) 

object. 

(4) Pass the GAMESS.GaussianBasisMolecular and CompositeIntegralDescr 

objects to the MPQC.IntV3EvaluatorFactory component and get the reference 

to a MPQC.IntegralEvaluator2 object.  

(5) Invoke the compute method of the MPQC.IntegralEvaluator2 object inside a 

two-level loop structure that computes integrals over all pairs of shell basis 

functions. 
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for (int64_t ii=0; ii<nshell; ii++) { 
      for (int64_t jj=0; jj<=ii; jj++) { 
          eval2_.compute(ii,jj); 
      } 
} 

(6) Pass the GAMESS.GaussianBasisMolecular and CompositeIntegralDescr 

objects to the MPQC.IntV3EvaluatorFactory component and get the reference 

to a MPQC.IntegralEvaluator4 object. 

(7) Invoke the compute method of the MPQC.IntegralEvaluator4 object inside a 

four-level loop structure that computes integrals over all shell quartets. 
for (int64_t ii=0; ii<nshell; ii++) { 
     for (int64_t jj=0; jj<=ii; jj++) { 
         for (int64_t kk=0; kk<=jj; kk++) { 
             for (int64_t ll=0; ll<=(kk==ii?jj:kk); ll++) { 
                 eval4_.compute(ii,jj,kk,ll); 
             } 
         } 
     } 
} 

(8) Finalize and remove all objects and components. 

The goal of this experiment is to test interoperability only. The results of an integral 

computation in each iterate are usually used by some other computation. With initial 

interoperability established, our future work will turn to componentizing GAMESS code that 

utilizes GAMESS/MPQC/NWChem integral components. The performance of GAMESS 

integral components and issues in the interoperability of GAMESS with MPQC integral 

components are discussed in Chapter 5. 

4.2 The Design of the GAMESS Client-Side 
We have showed the preliminary experiments on integral calculations by using CCA 

components provided by GAMESS and MPQC. In this experiment, we instantiate a 

Chemistry.MoleculeFactory component, a GAMESS.ModelFactory component, a 

MPQC.IntegralEvaluatorFactory component, and a driver component in the CCA 

framework and several auxiliary classes have also been created, such as 

GAMESS.GaussianBasisMolecular, MPQC.IntegralEvaluator2, MPQC.IntegralEvaluator4, 

and Chemistry.Molecule classes. The user input options are read by the 

GAMESS.ModelFactory component; the basis set information and molecular geometry are 
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stored in a GAMESS.GaussianBasisMolecular object, which is passed to the 

MPQC.IntegralEvaluatorFactory component; and the one- and two-electron integrals are 

calculated by MPQC integral evaluators.  

However, this experiment is just for calculating all shell doublets and shell quartets 

for a molecule. A driver component is needed to manage the procedure of the computation. 

Whenever a new computation is required, or a new package joins in, some modification has 

to be done in the driver component or the SIDL interfaces, etc. For example, if we want to 

use CCA integral components provided by NWChem, a different loop structure may be used 

instead of the loop structures we listed above for looping over all shell multiplets. Or if we 

need to construct an energy calculation by using the integrals calculated by a CCA 

component, an option may be added: choose a program that will be used to calculate the 

integrals from the list {GAMESS, MPQC, NWChem}. There may be other options or SIDL 

interfaces required to construct a computation, which will complicate the implementation of 

each component. 

A more flexible way of implementing a computation of multiple packages through 

components is to wrap the functionalities implemented for components to create the object-

oriented client-side classes. In this section, the C++ client-side interfaces for the GAMESS 

computations, such as energy, gradient, and Hessian, will be presented, by using integrals 

calculated by integral evaluators from GAMESS, NWChem or MPQC. Before we jump into 

the detailed design, we need to understand how such a computation is processed. The 

sequential steps for performing an energy calculation are as the follows: 

1. Initialize GAMESS computations from a GAMESS input file: create a 

GAMESS.Model object, from which the gamess_start and gamess_read_input 

subroutines are invoked.  

2. Create a GAMESS.GaussianBasisMolecular object based on the basis set and 

molecular geometry information from the GAMESS input. 

3. Create an IntegralEvaluatorFactory object for the specified package (GAMESS, 

MPQC or NWChem); pass the GAMESS.GaussianBasisMolecular object and a 

ChemistryIntegralDescrCXX.CompositeIntegralDescr object as parameters to get an 

integral evaluator (1-, 2-, 3-, or 4-center). 
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4. Call the get_energy function of the GAMESS.Model object and the underlying 

integral calculations are performed by using the integral evaluators from step 3. 

Several Issues for Designing the Client-Side Interface 

There are several issues we have to take care in the design of such a client-side 

interface. For different chemistry programs, different loop structures for looping over all 

multiplets are used (e.g. GAMESS uses a different 4-level loop structure for 2e-integral 

computation from the one MPQC uses). The appropriate loop structure should be chosen for 

the specified package as long as the end user picks a package for doing the integral 

computations.  

Also, the integral ordering in GAMESS is different from the integral ordering in 

MPQC and NWChem (these two programs use the integral ordering defined by the cca-

chemistry group [24]). The conversion of the integral ordering for the integrals of each shell 

multiplet should be done automatically before the integrals being used in a computation. 

Since both MPQC and NWChem use the integral ordering defined in Joe Kenny’s paper [24], 

we only need two kinds of conversion: from the integral order used in GAMESS to the 

integral orders used in MPQC & NWChem; from the integral orders used in MPQC & 

NWChem to the integral orders in GAMESS. These two kinds of conversion must be 

incorporated within the client-side design of GAMESS. 

Finally, some language interoperability issues need to be considered carefully when 

constructing the client-side implementations. The underlying GAMESS computations are 

implemented in FORTRAN 77, and the integral computations of MPQC is implemented in 

C++. When constructing the C++ client-side of the GAMESS program, we should avoid 

directly calling the GAMESS wrapper functions, instead those function calls should be 

hidden in the server-side implementations.  

For example, when calling a wrapper function that takes a parameter of the type 

“int64_t” from the C++ client-side, I got a bunch of errors that “int64_t” is not defined. 

However, if an integer of the type “int64_t” is defined inside the C++ client-side code, not 

being passed to GAMESS wrapper functions, I will not get any errors. On the other hand, if 

the same wrapper function is invoked through the server-side implementations, the same 

errors will occur.  
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The reasons for designing the client-side in C++.  It is natural to create the object-

oriented design by programming in C++. The real computations are performed by the 

wrapper functions and GAMESS program, and the C++ client-side is used for reading user 

input options and facilitating corresponding configurations, such as which package will be 

used for providing integral evaluators. When only the references to integral evaluators are 

passed from C++ to FORTRAN 77 for performing integral calculations for GAMESS 

computations, the performance overhead from the language interoperability should not be 

large. Since the C++ client-side should be easier to implement than the FORTRAN client-

side for GAMESS, it could be an experiment for implementing the FORTRAN client-side.  

The Design of the C++ Client-Side Interface 

Basically, several classes are designed for wrapping the integral computations 

provided by CCA chemistry components: ClientIntEvalFactory (wraps 

IntegralEvaluatorFactory components), ClientInteEval1 (wraps IntegralEvaluator1 class), 

ClientIntEval2 (wraps IntegralEvalutor2 class), ClientIntEval3 (wraps IntegralEvaluator3 

class) and ClientIntEval4 (wraps IntegralEvaluator4 class). For each class, there is a field: 

package_, for specifying the name of the underlying program. The class 

GAMESSCCAComputation is designed for GAMESS to perform chemistry computations 

with the references to a GAMESS.Model object and a ClientIntEvalFactory object from the 

specified program.  

GAMESS iteratively calculates and stores the integrals for a shell multiplet in a one-

dimensional array. The integrals in this array will be either written to a disk file (the 

conventional method) or immediately used by other subroutines (the direct method). The 

integral evaluators from MPQC or NWChem will return a SIDL array of double data type for 

the integrals of specified shell multiplet. The SIDL array returned by those integral 

evaluators can be converted to a one-dimensional array and passed to GAMESS through the 

CCA interfaces. We need to make sure the ordering of integrals in the array is the same as 

the ordering in GAMESS integral array. A GAMESS wrapper function gamess_reorder, for 

converting the integrals with the orders used in MPQC/NWChem to the orders used in 

GAMESS, is needed before any integrals be used in GAMESS computations. On the other 
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hand, a method reorder_gtom in a ClientIntEval class is also needed to convert the integral 

ordering in a GAMESS array to the format that MPQC & NWChem use.  

In addition, several FORTRAN 77 functions are needed for underlying integral 

computations. For example, gamess_eval2 is designed to loop over all 2-center integrals by 

using the integral evaluator passed from the C++ interface (from MPQC or NWCHEM), 

where the memory address of the integral evaluator2 is passed as “INTEGER*8”. Similarly, 

the function gamess_eval4 is designed for looping over all shell quartets.  Figure 14 show the 

structure of the GAMESS client-side interfaces for computing energy, gradient and Hessian.  
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Figure 14. The Client-Side design for GAMESS computations. A GAMESS.Model class 
is used for performing energy, gradient and Hessian calculations. The underlying integral 
calculations are provided by one of the three chemistry programs: GAMESS, NWChem 
and MPQC. For the integrals provided by MPQC and NWChem, the integral orders will 
be converted to the orders used in GAMESS before they are used in any GAMESS 
computations. 
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CHAPTER 5.  PERFORMANCE EVALUATION 
Within the scope of GAMESS, performance bottlenecks can occur in many places 

such as cache utilization, I/O or communication. Performance evaluation and monitoring 

tools for each of these potential bottlenecks may take years to develop, so starting from 

scratch is not a feasible solution. A useful approach is to use existing performance tools such 

as TAU (Tuning and Analysis Utilities) [29] or PAPI [30I], and incorporate them into 

GAMESS. These performance tools usually provide APIs for application developers to 

develop performance evaluation functions according to application needs. 

Incorporating performance tools into GAMESS usually requires inserting 

performance function calls into the GAMESS source code, which is an intrusive approach. 

With GAMESS components, we prefer a performance tool that provides an interface 

compatible with the CCA standard, such that the access to performance tool APIs can be 

through component ports instead of direct calls to the API. In particular, the TAU 

performance system meets our requirements. 

Our performance evaluation includes three parts: (1) test the overhead incurred by the 

CCA framework; (2) evaluate the load balance strategy for the two-electron integral 

calculation used in GAMESS CCA components; (3) explore the performance for integrating 

the integral calculation of GAEMSS and MPQC.  

The platform used for testing is a SMP cluster of 4 nodes, where each node has two 

dual-core 2.0GHZ Xeon "WoodCrest" CPUs and 8GB of RAM. The nodes are 

interconnected with both Gigabit Ethernet and DDR Infiniband. The operating system is Red 

Hat Enterprise Linux 4. 

5.1 TAU Performance Tools 
TAU is based on a general computation model [29], which is a superset of the one 

used by GAMESS. It provides technology for performance instrumentation, measurement, 

and analysis for complex parallel systems. Performance information can be captured at the 

node/context/thread level by using TAU. Besides performance instrumentation capability on 

both the component level [31] and the source code level, TAU also provides an interface to 

access the hardware counters through PAPI or PCL [31]. 
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For CCA applications, TAU provides a performance component to measure the 

performance of CCA component software through the common MeasurementPort interface. 

Besides the performance component, TAU also provides MasterMind and Optimizer 

components for performance data collection for performance modeling of components and 

constructs optimal component assemblies, and Proxy Generators build proxies for both the 

MeasurementPort and the Monitorport in performance component [32]. To successfully 

install the TAU performance component and use all the provided functionality, both TAU 

and PDT (Program Database Toolkit) [33] must first be installed TAU performance 

components then can be set up.  

5.2 Test the Performance Overhead of the CCA Framework 
To test the overhead of the CCA framework in GAMESS calculations, we compared 

the wall-clock times (in seconds) of the RHF energy calculations for four molecules: 

ergosterol, Darvon, luciferin and nicotine, by using GAMESS with and without the CCA 

framework. In both cases, the GAMESS/DDI/MPI model will be used, since this is the model 

we will use for GAMESS to integrate with other packages through components.  The TAU 

timer is inserted between the calls to calculate energy in the GAMESS program and the 

get_energy method of the GAMESS.Model class.   

First, all the computations will run in sequential for testing the overhead incurred by 

the CCA framework in a single CPU. Table 2 shows the wall-clock time of the energy 

computations by using the GAMESS program (the second column) and the 

GAMESS.ModelFactory component (the third column). For the GAMESS program, the type 

of the computation is set as “energy” in the user input file. For the GAMESS.ModelFactory 

component, the get_energy method of a GAMESS.Model class is called. The results show that 

Table 2. The wall-clock time (Seconds) for the RHF energy calculation with & without the 
CCA framework 

Molecule No CCA With CCA 
Darvon 3602.3 3607.4 
luciferin 138.2 143.3 
nicotine 61.9 64.3 
h2o (CCQ) 10.1 11.2 
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the performance overhead incurred by using the CCA framework is less than 10~15 percent 

of the wall-clock time when using the GAMESS program without CCA. 

Then we run the energy calculation of the molecule “nicotine” in parallel for 

comparing the scalability of the GAMESS program with and without CCA. Figure 15 shows 

that the scalability of the GAMESS program is similar as the scalability of the GAMESS 

CCA components.  
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Figure 15. The energy calculation of the molecule “nicotine” run on both the original 
GAMESS program and the GAMESS CCA component, which we labeled as “no CCA” and 
“with CCA”, respectively. 

5.3 The Load Balance in Two-Electron Integral Computations 
There are two kinds of load balancing strategies used in GAMESS to distribute the 

tasks of calculating two-electron integrals among processes: the dynamic load balance and 

the static load balance. For the dynamic load balance strategy, the tasks are dynamically 

assigned to a process and a global counter in DDI is used to make sure each task will be 

executed exactly once. This method adjusts the distribution of the tasks among processes 

dynamically, since the current CPU usages and the quality of the network connection will 

both affect the results whether or not a task is assigned to a process. For the static load 

balance strategy, the tasks are assigned to each process according to the identity of the 

process. This method guarantees the number of the tasks assigned to each process is the 

same. Theoretically, the static load balance is more stable since the number of tasks assigned 

to every process is the same, and the dynamic load balance is more efficient since the number 

of tasks will be adjusted dynamically according to the work load of a process. By default, the 

dynamic load balance is normally used in GAMESS. 
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DO 920   II = IST, NSHELL  (first level) 

DO 900   JJ = JST, II  (second level) 

IF USE DYNAMIC LOADBALANCE, GET THE CURRENT GLOBAL COUNTER 
AND DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOP.   

DO 880   KK = KST, JJ  (third level) 

IF USE STATIC LOADBALANCE, THE ID OF THE CURRENT PROCESS 
COULD DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOP.  

DO 860   LL = LST, KK  (forth level) 
CHECK FOR REDUNDANTIES BETWEEN THE 3 COMBINATIONS 
(II,JJ//KK,LL), (II,KK//JJ,LL),(II,LL//JJ,KK) 

COMPUTE SHELL QUARTET AND PROCESSING THE RESULTS 

860 CONTINUE 

860 CONTINUE 

860 CONTINUE 
860 CONTINUE 

Figure 16. Load balancing in GAMESS TWOEI subroutine. The small case letters inside 
parenthesizes indicate the level number of each loop. The block of inner loops surrounded 
by the solid line shows the size of the task for a dynamic loading procedure. The block of 
inner loops surrounded by the dashed line shows the size of task for a static loading. 

 
In GAMESS the two-electron integrals are computed inside a 4-level nested loop 

structure (Figure 16) in the TWOEI subroutine, The dynamic load balance is putted after the 

second level of the loop, where the size of a task for each dynamic loading procedure is the 

block of inner loops surrounded by the solid line. A global counter decides if a process needs 

to continue with the inner loops for each loading procedure and each task is performed by 

exactly one process. The static load balance is arranged after the third level of the loop, such 

that the size of the task for each loading procedure is the inner loops surrounded by the 

dashed line. Since the index of each task and the id  entity of a process decide if the process 

continues with the inner loop, no communication is needed in the static load balancing. 

However, the chemistry integral interface IntegralEvaluator4Interface defines the 

compute method to compute one shell quartet at a time. When we keep the load balance 

being handled in the wrapper function - gamess_twoei_compute (this wrapper function called 

 



www.manaraa.com

 59 

by compute method of IntegralEvaluator4), the size of the task for each loading procedure is 

just a single shell quartet. This is analogues to move the load balance in TWOEI to the 4th 

level of the loop, and there is no guarantee that the performance in the original GAMESS 2e-

integral computation would be preserved.  

We will use the molecule “nicotine” to test the performance and scalability of the 

two-electron integral calculation when the dynamic load balance is located after the 2nd level, 

the 3rd level and 4th level of the loop structure. Three groups of the performance data will be 

compared and the results will help us to find an appropriate strategy to move the load balance 

of the two-electron integral calculation from GAMESS to the component level without 

sacrifice the performance. Note that we will not show the performance of the two-electron 

integral calculation in TWOEI when moving the static load balance to the 4th level of the 

loop structure since the change of the performance is not significant.  

Test dynamic load balance. We run the 2e-integral calculation of “nicotine” by 

using 1.1, 2.1, and 4.1 nodes in GAMESS/DDI/MPI mode, where x.y means in that 

experiment we use x nodes and y CPUs on each node, and compare the scalability show 

the wall-clock time for each node when using dynamic load balance in 2nd, 3rd and 4th level of 

the loop structure. The upper chart of Figure 16 shows that the performance is much worse 

when moving the dynamic load balance to the 4th level of the loop structure. When using 4 

processes, the wall-clock time of calculating 2e-integrals when the dynamic load balance is at 

the 4th level is almost double the wall-clock time when the dynamic load balance is at the 2nd 

or the 3rd level. The lower chart of Figure 17 shows that the tasks are distributed unevenly 

among processes when using 2.1 or 4.1 nodes, where in each case the process 0 computes 

almost all of the shell quartets. This also causes the poor scalability when running in more 

than one node.   

The load balance in GAMESS CCA integral components 

From the performance results showed in Figure 16, when the load balance is handled 

in the 4th level of the loop structure, the number of tasks will be distributed unevenly among 

processes when using more than one node, which will also lead to the poor scalability. This 

means that we should not reduce the size of a task to a shell quartet. Since each function call 

to the compute method of an integral evaluator4 returns the integrals of a shell quartet, we 
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The Parallel Performance of 2e-integral Calculation 
When Moving the Dynamic Load balance to the 2nd, 

3rd, and 4th Level of the Loop Structure
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The Number of Shell Quartets Computed by Each CPU 
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Figure 17. The upper chart shows the parallel performance of the 2e-integral calculation 
when moving the dynamic load balance to the 2nd, 3rd, and 4th level of the loop structure. The 
lower chart shows the number of shell quartets computed by each process when the dynamic 
load balance is moved to the 4th level of the loop structure. 
 

cannot handle the load balance inside the wrapper function, or inside an integral evaluator. 

Not losing or limiting the functionalities of the original GAMESS program, we copy the loop 

structure for the 2e-integral calculation in the original GAMESS code to a TWOEIDriver 

component that use the same load balancing approach as TWOEI, except that the 2e-integrals 

are calculated by calling the compute method of the GAMESS.IntegralEvaluator4 object.  

The implementation of TWOEIDriver has a flag – “load_balance” for choosing a type 

of the load balance for the 2e-integral computation from components. The available options 

are:  
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load_balance = 0, if no load balance  
 load_balance = 1, if static load balancing is used 
 load_balance = 2, if dynamic load balancing is used [DEFAULT] 

The TWOEIDriver component is presented as an example of using GAMESS CCA 

integral components for computing 2e-integrals with different choices of load balancing 

methods, not being designed for a real computation. It is also used for the performance 

evaluation of the 2e-integral computation by using GAMESS components. Since the loop 

structure for the 2e-integral computation is copied from the TWOEI subroutine to the 

component-level, it is fairly to predict the performance of the static and dynamic load 

balance of the 2e-integral computation by using GAMESS CCA components should be as 

good as the performance by using GAMESS.  

Table 3. The number of shell quartets computed by using the dynamic load balance strategy 
in the TWOEIDriver component 

 1.1 1.2 2.1 1.4 2.2 4.1 

process 0 2.2808E+06 1.16488E+06 1.11668E+06   567397 571247 555183 

process 1  1.11592E+06 1.16413E+06   576551 565618 570469 

process 2    557617 580110 564786 

process 3    579240 563830 590367 

Table 3 shows the number of shell quartets computed by each process when 

performing 2e-integral computation with GAMESS CCA components, where the number of 

shell quartets computed on each process is very close when using 1.1, 1.2, 2.1, 1.4, 2.2 and 

4.1 nodes.  

5.4 Performance Evaluation for Integral Computations 
In this section we present only the performance of the two-electron integral 

computation since this computation takes significantly more CPU time than the one-electron 

integral computation does. We measure the wall-clock time for calculating all shell quartets 

of a molecule by using the GAMESS program, GAMESS wrapper functions, GAMESS CCA 

integral components and GAMESS & MPQC CCA components. First, we examine the 

performance overhead incurred by the design of the wrapper functions. This is done by 
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invoking the gamess_twoei_compute wrapper function inside the four-level nested loop 

structure, and comparing the results with the time of the same computation by using the 

original GAMESS two-electron integral computations. Second, we examine the performance 

overhead caused by the CCAFFEINE framework when running the GAMESS CCA integral 

computations. This is done by evaluating the performance overhead of 

GAMESS.IntegralEvaluator4 class, which in turn uses the wrapper functions for calculation. 

Finally, we examine the performance overhead incurred by the integration of GAMESS and 

MPQC. 

The TAU performance tools are used for measuring the performance of two-electron 

integral computations. We insert TAU timers in both component-level methods and in 

GAMESS subroutines. The wall-clock time of looping over all shell quartets is used as the 

performance data and the time is measured in seconds.  

Since both NWChem and MPQC parallelize the routines that call the integral 

computations, instead of parallelizing the integral computations themselves, we have decided 

to show only sequential performance data here. . 

Test cases. Four molecules are used as our test cases. Table 4 shows the names of the 

molecules, the basis set, the number of atoms, the number of shells, the number of basis 

functions, and the number of shell quartets. The test cases are listed in descending order 

according to the number of two electron integrals.  

The integral screening in GAMESS two-electron integral computation.  Integral 

screening is a technique to ignore calculating integrals which are estimated to have little or 

no contribution to the final results of the Fock matrix [22]. GAMESS by default uses integral 

screening techniques to screen out small integrals in the two-electron integral computation. 

In the design of CCA integral components, the integral screening has been separated from the 

integral computation, and is used as an independent option. Since the three chemistry 

packages use different screening techniques and default thresholds for small integrals, the 

number of non-zero two-electron integrals being calculated by each package is different from 

each other. We turn off the integral screening in every package when conducting 

interoperability testing to make sure every integral component will compute the same number 

of shell quartets.    
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Table 4. Test GAMESS integral computation 

molecule basis set # of atoms # of shells # of 
basis functions 

# of  
shell quartets 

ergosterol 6-31G* 73 204 523 2.18625E+08
Darvon 6-31G* 54 158 433 7.88956E+07

luciferin 6-31G* 26 90 294 8.38656E+06

nicotine 6-31G* 44 76 208 4.2822E+06

In GAMESS, a native buffer (in memory), GHONDO, is allocated for storing 2e-

integrals of one shell quartet. The results of GHONDO are either read and saved to a disk 

file, or used immediately, and the values of GHONDO are reset to zeros and used for storing 

2e-integrals for another shell quartet in the next iteration. However, to componentize 2e-

integral calculations for a shell quartet, the results should be stored in a buffer passed from a 

calling function (or an integral evaluator4). Instead of using GHONDO for storing the results 

of computing a shell quartet, we use the buffer passed to the wrapper function. The resulting 

integrals of each shell quartet can be accessed through the reference to the buffer by the end 

of each iterate and no disk I/O is needed for writing the results to a disk file.  

To compare the performance of the original GAMESS subroutine and the wrapper 

function, we modified the original GAMESS code to ignore disk I/O after computing each 

shell quartet (to be compatible with our design in the wrapper function). The second column 

of Table 5 shows the performance data for computing 2e-integrals in GAMESS.  

Test GAMESS wrapper integral computation.  The third column of Table 5 shows 

the performance for 2e-integral computation using wrapper functions. The overhead of the 

2e-interal computation using the wrapper functions is about 17% of the 2e-integral 

computation with the original GAMESS code. 

In the original GAMESS code, two-electron integrals are computed by looping over 

all shell quartets in four nested loops. In GAMESS wrapper functions, the 

gamess_twoei_compute function computes one shell quartet at a time. Thus, when looping 

over all shell quartets, we have ( )4NO  function calls to the gamess_twoei_compute function. In 

the original GAMESS code, statements that are inside the first, second or third-level of the 

four-level loop structure, now need to be executed for each shell quartet, about ( )4NO  times. If 
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Table 5.  Wall-clock times (sec) for two-electron integral computations 

molecule GAMESS GAMESS Wrapper 
Functions 

GAMESS CCA 
Components 

ergosterol 801.52 921.35 980.16
Darvon 361.47 422.72 445.15
Luciferin 63.39 74.11 77.06
Nicotine 22.93 26.71 28.50

there is an overhead introduced by each single call to the compute method, the overall 

performance overhead can be significant.  

Test GAMESS CCA integral computation.  The goal of this experiment is to test 

the performance overhead of the CCAFFEINE framework. The GAMESS wrapper functions 

are used for implementing GAMESS CCA components. Thus, a buffer is passed from a 

GAMESS.IntegralEvaluator4 object to the GAMESS wrapper functions for storing results of 

a shell quartet and the reference to the buffer is returned. The fourth column of Table 5 

shows the running time of the 2e-integral calculation obtained using GAMESS CCA integral 

components. It shows that the performance overhead is relatively small, since all times are 

within 10% of the original running time. The same amount of performance overhead incurred 

by the CCA framework has also been mentioned in the previous literatures. However, the 

total performance overhead incurred for componentizing integral calculation (include the 

wrapper functions and CCA frameworks) is relatively large, about 28.7% (1.17*1.1-1). This 

overhead may be reduced through either implementing GAMESS CCA components in 

FORTRAN (the current version is implemented in C++), or refining the GAMESS wrapper 

functions.  

Integration of GAMESS & MPQC.  Integral computations using CCA components 

from both MPQC and GAMESS are conducted through the process outlined in Section 3.5. 

In our testing, we produced the wall-clock time for computing two-electron integrals by 

using GAMESS CCA components, and GAMESS & MPQC components. Here we choose 

the water molecule with the cc-pVQZ and aug-cc-pVQZ basis sets to perform the two-

electron integral calculations. The performance results of such two-electron integral 

calculations by using the original GAMESS program and the original MPQC program are 

expected to be very close, since the water molecule is relatively small and the basis sets we 
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used here is quite large. The MPQC program contains only one integral code, which is 

sophisticated and slower than some integral codes in GAMESS (there are four different 

integral codes in GAMESS). When using large basis sets, GAMESS will choose the more 

sophisticated/slower integral code, which has similar performance with the integral code in 

MPQC. Table 6 shows that the discrepancy of the 2e-integral computation for the water 

molecule is very small between GAMESS CCA components and GAMESS & MPQC CCA 

components, and these results are exactly what we have expected.  

Table 6. Wall-clock times (sec) for testing the water molecule with GAMESS and MPQC 
basis set GAMESS CCA 

Components 
GAMESS & MPQC CCA 

Components 
cc-pVQZ 3.63 3.65

aug-cc-pVQZ 16.07 15.96
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CHAPTER 6.  DISCUSSION AND CONCLUSION 
In the process of developing integral components, several issues affected our design 

of components, or delayed the progress of component development. We discuss these issues 

in this section.  

Low-level interoperability  

Ideally if similar functions from different packages are componentized, complying 

with the same interface, we should be able to use these components interchangeably. 

However, if components are designed without substantial modifications to existing 

applications (e.g., using wrapper functions), the ``plug-and-play'' goal may be difficult to 

achieve. 

The differences in the approaches to develop integral components provide a good 

example of the difficulties faced in interfacing low-level components in a “plug-and-play” 

fashion. For the MPQC integral component, the underlying software architecture is object-

oriented and is more amenable to the encapsulation concepts of component architectures. For 

GAMESS, a package with over two decades of development history and developers scattered 

around the world, encapsulation into components may be error-prone in part because the 

subroutines to be encapsulated may be entangled with other subroutines developed by many 

scientists over a long period of time. To solve this problem, we chose to tightly couple the 

initialization processes of the original GAMESS program and the GAMESS CCA 

architecture, even though, in the standardized interfaces, it may be possible to use 

components from other packages for initialization. 

In addition, the different parallel mechanisms used in a computation may also hinder 

the interaction of low-level components in a “plug-and-play” fashion. GAMESS uses the 

dynamic/static load balance strategies to distribute two-electron integrals across processes, 

while NWChem and MPQC parallelize the functions that use the two-electron integral 

calculations. This different design of the parallel mechanisms for 2e-integral calculations will 

affect the way and the performance of using the integral evaluators from GAMESS and the 

other two packages. For example, when a GAMESS energy computation uses the 2e-

integrals computed by MPQC CCA components, the performance of using integrals from 
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MPQC may be worse than using integrals from GAMESS since the MPQC integral 

evaluators can only run sequentially by themselves. Currently, we just limit our application 

to use the integral evaluators in a single CPU. However, to reach a better or keep the original 

scalability, chemists from different packages must find out a way to balance the way of using 

integral evaluators from different packages. 

Issues for code efficiency 

The integral screening improves the efficiency of integral computations. In 

GAMESS, screening is a ‘built-in’ function that is integrated with integral computations and 

can be turned on or off by setting a flag in the input file. In MPQC, screening is not coupled 

with integral computations but rather may be performed by the caller of integral 

computations. 

 The interfaces for integral and other quantum chemistry computations are defined 

from a chemistry algorithm point of view. That is, the interfaces for data and methods 

performing electronic structure calculations are defined, but not for the procedures to 

improve code efficiency, such as using of screening. On one hand, we want to keep the 

interfaces as clean as possible, so they should include only data and methods that are 

essential to a computation; on the other hand, if a technique to improve code efficiency is 

widely used by every package, we may want to include this technique somewhere in the 

interface. How to seamlessly integrate via common interfaces computations and their 

efficient implementations, is a difficult design choice. 

Version control and testing procedure  

Figure 18 shows the package dependence in this project. Besides three chemistry 

packages, we also use performance tools provided by TAU [17] to conduct component level 

performance evaluations. All packages, even compilers, are constantly updated with new 

versions. Whenever a certain package is updated, all the other packages may require 

rebuilding, and we have to conduct stability and compatibility testing all over again. The 

process of rebuilding packages is time consuming; if errors occur during stability and 

compatibility testing, locating the source of the error is equally time-consuming.  When some 
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bugs are found in a new version of a package, we may have to roll back to an older stable 

version to continue the development process. 

With the scope of quantum chemistry computations and the capabilities provided by 

the three packages, we expect more components will be developed. Exploring/developing a 

capable tool to minimize efforts in maintaining/testing packages is essential in a real-size 

project such as this one. 

GAMESS MPQC NWChem

TAU
Performance

Tools

Cca-chem-apps

Cca-chem-generic

Fortran 90Fortran 77C++

CCA-Tools

Babel

JavaC Python

Figure 18. The package dependence for the CCA chemistry project. 
 

Conclusion and future works 

In this thesis, I present our experience in developing CCA components based on a 

large-scale quantum chemistry program. The two parallel mechanisms for GAMESS CCA 

components and the potential problems for each model are discussed. The process of 

componentizing GAMESS energy, gradient, Hessian and integral computations is also 

delineated in detail and issues of interoperability are discussed.  This will provide application 

scientists a perspective about the problems they may be facing when componentizing their 

packages to explore interoperation with other software. We are extending our experiments to 

integrate GAMESS and NWChem at the fine-grained level and also build a complete 

chemistry computation, such as calculating the energy, by using any two of the three 

chemistry packages through the CCA interfaces. Currently, we have designed the client-side 

interfaces for integrating GAMESS energy calculation with the other two packages through 
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integral computations. The implementation of the GAMESS client-side computations is one 

of our future works.  

Based on our experience, community-agreed interfaces and data standards provide 

only the first step to componentization of a package; substantial efforts are needed to 

improve the usability of components, control versions of the underlying software, minimize 

overhead caused by extra layers of function calling, and standardize testing procedures to 

efficiently explore the errors in coupling many software packages. Componentizing a large-

scale legacy software package is an especially challenging task. In other words, 

comprehensive scientific software engineering is essential in developing components that are 

truly shareable between scientific packages. 

Future works.  Integrating GAMESS and NWChem at the fine-grained level, such as 

on integral calculations, will be one of our future works. We will also build a complete 

chemistry computation, such as calculating the energy, by using any two of the three 

chemistry packages through the CCA interfaces. 
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APPENDIX A. THE GAMESS CLIENT-SIDE INTERFACE 

The C++ interfaces for the GAMESS client-side: 
 
/** 
* The ClientIntEvalFactory class wraps the 
* IntegralEvaluatorFactory component for different packages. 
*/ 

class ClientIntEvalFactory { 
   
  public:  
 

/* the reference to an integral evaluator factory */ 
Chemistry::QC::GaussianBasis::IntegralEvaluatorFactoryInterface  
    evalfactory; 

 
/* 
 * the constructor 
 * @package the package that provides integral calculation 
 * @molecular the Molecular object stores basis set information 
 */ 
ClientIntEvalFactory( 
    string package, 
    Chemistry::QC::QaussianBasis::MolecularInterface molecular)  
{ 
    // set the package name 
    if (package is GAMESS, NWChem or MPQC) package_ = package; 
    else package_ = “GAMESS”; // default 
 
    create an evaluator factory “evalfactory”,  
    this is different for the different package  
  
    // initialize Molecular object 
    molecular_ = molecular; 
}  

 
/* get the package name */ 
string get_package() { 
    return package_; 
}  
 
/* 
 * get an ClientIntEval1 object with the specified integral type. 
 * GAMESS does not provide the integral evaluator1. 
 * @type the type of the integral 
 */ 
ClientIntEval1 get_evaluator1(string type) { 
    check to see if the type of integral exists 
 
    // create a composite integral descriptor 
    create_descriptor(type); 
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    // create an integral evaluator1 
    Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1 =  
        evalfactory.get_evaluator1(molecular_, descr); 
 
    // create a ClientIntEval1 object 
    ClientIntEval1 client_eval1 =  
        new ClientIntEval1(type, package_, eval1); 
 
    return client_eval1; 
} 
 
/*  
 * get a ClientIntEval2 object with the specified integral type. 
 * @type the type of the integral 
 */ 
ClientIntEval2 get_evaluator2(string type)  
{ 
    check to see if the type of integral exists 
 
    // create a composite integral descriptor 
    create_descriptor(type); 
 
    // create an integral evaluator2 
    Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2 =  
        evalfactory.get_evaluator2(molecular_, molecular_, descr); 
 
    // create a ClientIntEval1 object 
    ClientIntEval1 client_eval2 =  
        new ClientIntEval1(type, package_, eval2); 
 
    return client_eval2; 
 
} 
 
/* 
 * get a ClientIntEval3 object with the specified integral type. 
 * GAMESS does not provide the integral evaluator3. 
 * @type the type of the integral 
 */ 
ClientIntEval3 get_evaluator3(string type)  
{ 
        check to see if the type of integral exists 
 
    // create a composite integral descriptor 
    create_descriptor(type); 
 
    // create an integral evaluator3 
    Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3 =  
        evalfactory.get_evaluator3 
            (molecular_,molecular_,molecular_,descr); 
 
    // create a ClientIntEval1 object 
    ClientIntEval3 client_eval3 =  
        new ClientIntEval3(type, package_, eval3); 
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    return client_eval3; 
 
} 
 
/*  
 * get a ClientIntEval4 object with the specified integral type  
* @type the type of the integral 
*/ 
ClientIntEval4 get_evaluator4(string type)  
{ 
    check to see if the type of integral exists 
 
    // create a composite integral descriptor 
    create_descriptor(type); 
 
    // create an integral evaluator4 
    Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4 =  
        evalfactory.get_evaluator4 
            (molecular_,molecular_,molecular_,molecular_,descr); 
 
    // create a ClientIntEval4 object 
    ClientIntEval1 client_eval4 =  
        new ClientIntEval1(type, package_, eval4); 
 
    return client_eval4; 
 
} 
 

    
  private: 
 
    // the package name 

string package_;  
 
// the reference to a molecular object  
Chemistry::QC::GaussianBasis::MolecularInterface molecular_; 
 
/** 
* Create descriptor with the specified integral type. 
* A descriptor is needed for each integral evaluator. 
* @type the integral type  
*/ 

Chemistry::QC::GaussianBasis::CompositeIntegralDescrInterface  
    create_descriptor(string type) 
{ 
    create a CompositeIntegralDescr object based on the type 
    of the integrals 
} 
 

}; 
 
 
/** 
* the implementation of ClientIntEval1 may not be necessary for 
* GAMESS since in GAMESS only 2-center and 4-center integrals are  
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* used. 
*/ 

class ClientIntEval1 { 
   
  public: 

 
/* 
* constructor 
* initialize an integral evaluator for the specified package and  
* the type of the integral 
*/ 
ClientIntEval1( 
    string type,  
    string package,      
    Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1) 
{ 
    type_ = type; 
    package_ = package; 
    eval1_ = eval1; 
}  
 
/* 
 * get an integral evaluator1 
 */ 
Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface get_eval1()  
{ 
    return eval1_; 
} 
 
/* 
 * Set the reference to the integral buffer from the integral 
 * evaluator1. This method has to be called before get_array, or any 
 * reorder method is called. 
 */ 
void set_array( 
    Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)  
{ 
    buffer_ = eval1_.get_array(desc); 
} 
 
/** 
 * return the reference to the integral array 
 */ 
double* get_array()  
{ 
    return buffer_; 
}  

 
  private: 

 
// the reference to an integral evaluator1 
Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1_; 

 
    // the type of the integral evaluator1 

string type_; 
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// the package name 
string package_; 
 
// the one-dimension array that holds the integrals 
// for a one-center integral. 
double* buffer_; 

} 
 

class ClientIntEval2 { 
  public: 

 
/** 
* constructor 
* initialize an integral evaluator for the specified package and  
* the type of the integral 
*/ 
ClientIntEval2(string type, string package, 
   Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2)  
{ 
    type_ = type; 
    package_ = package; 
    eval2_ = eval2; 
} 
 
/* 
 * get an integral evaluator2 
 */ 
Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface get_eval2()  
{ 
    return eval2_; 
} 
 
/** 
 * Set the reference to the integral buffer from the integral 
 * evaluator2. This method has to be called before get_array, or any 
 * reorder method is called. 
 */ 
void set_array( 
    Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)  
{ 
    buffer_ = eval2_.get_array(desc); 
} 
 
/** 
 * return the reference to the integral array 
 */ 
double* get_array()  
{ 
    return buffer_; 
}  
 
/** 
 * reorder the integrals in the buffer 
 * to the integral ordering defined by the cca-chemistry group [24] 
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 */ 
void reorder_gtom()  
{ 
    if (package_ == “GAMESS”)   
        reorder the integrals (in buffer_) to the order used in 
        MPQC/NWCHEM 
} 
 

  private: 
 
/* the reference to an integral evaluator2 */ 
Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2_; 

 
    // the type of the integral evaluator2 

string type_; 
 
// the package name 
string package_; 
 
// the one-dimension array that holds the integrals 
// for a shell doublet. 
double* buffer_; 

}; 
 

/** 
* the implementation of ClientIntEval3 may not be necessary for 
* GAMESS since in GAMESS only 2-center and 4-center integrals are  
* used. 
*/ 

class ClientIntEval3 { 
  public: 

 
/** 
* constructor 
* initialize an integral evaluator for the specified package and  
* the type of the integral 
*/ 
ClientIntEval3(string type, string package, 
   Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3)  
{ 
    type_ = type; 
    package_ = package; 
    eval3_ = eval3; 
} 
 
/* 
 * get an integral evaluator3 
 */ 
Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface get_eval3()  
{ 
    return eval3_; 
} 
 
/* 
 * Set the reference to the integral buffer from the integral 

 



www.manaraa.com

 79 

 * evaluator3. This method has to be called before get_array, or any 
 * reorder method is called. 
 */ 
void set_array( 
    Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)  
{ 
    buffer_ = eval3_.get_array(desc); 
} 
 
/** 
 * return the reference to the integral array 
 */ 
double* get_array()  
{ 
    return buffer_; 
}  
 

  private: 
 
// the reference to an integral evaluator3 
Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3_; 
 

    // the type of the integral evaluator3 
string type_; 
 
// the package name 
string package_; 
 
// the one-dimension array that holds the 3-center integrals 
double* buffer_; 

}; 
 
class ClientIntEval4 { 
  public: 
 

/** 
* constructor 
* initialize an integral evaluator for the specified package and  
* the type of the integral 
*/ 
ClientIntEval4(string type, string package, 
   Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4)  
{ 
    type_ = type; 
    package_ = package; 
    eval4_ = eval4; 
} 
 
/* 
 * get an integral evaluator4 
 */ 
Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface get_eval4()  
{ 
    return eval4_; 
} 
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/** 
 * Set the reference to the integral buffer from the integral 
 * evaluator4. This method has to be called before get_array, or any 
 * reorder method is called. 
 */ 
void set_array( 
    Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)  
{ 
    buffer_ = eval4_.get_array(desc); 
} 
 
/** 
 * return the reference to the integral array 
 */ 
double* get_array()  
{ 
    return buffer_; 
}  
 
/** 
 * reorder the integrals in the buffer 
 * to the integral ordering defined by the cca-chemistry group [24] 
 */ 
void reorder_gtom()  
{ 
    if (package_ == “GAMESS”)   
        reorder the integrals (in buffer_) to the order used in 
        MPQC/NWCHEM 
} 
 

  private: 
 
// the reference to an integral evaluator4 
Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4_; 

 
    // the type of the integral evaluator4 

string type_; 
 
// the package name 
string package_; 
 
// the one-dimension array that holds the integrals 
// for a shell quartet. 
double* buffer_; 

}; 
 
 
 
/**  
  * to perform GAMESS computation by using integrals  
  * from different packages 
  */ 
class GAMESSCCAComputation { 
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  public: 
 
/* 
 * A ClientIntEvalFactory object for providing 
 * integral calculation from GAMESS, MPQC or NWCHEM. 
 */ 
ClientIntEvalFactory evalfac; 

 
/* constructor */ 
GAMESSCCAComputation()  
{ 
    integral_package_ = “GAMESS”; 
    intputfile_ = “”; 
} 
 
/* 
 * set the name of the package for integral calculation.  
 * the default package is GAMESS. 
 */ 
void set_integral_package(string integral_package)  
{ 
    integral_package_ = integral_package; 
} 

     
/* 
 * set the full path to the GAMESS input file 
 */ 
void set_inputfile(string inputfile)  
{ 
    inputfile_ = inputfile; 
} 

 
/*  
 * initialize a GAMESS.Model object and  
 * a ClientIntEvalFactory object. 
 * initialize GAMESS computation. 
 */ 
int initialize()  
{ 
    initialize the model object 
 
    // pass the input file for GAMESS wrapper functions to read 
    model.setCoordinatesFromFile(inputfile.c_str()); 
 
    // initialize the molecular object 
    molecular = GAMESS::GaussianBasis_Molecular::_create(); 
    molecular.initialize(“”);    
 
    // initialize the ClientIntEvalFactory object 
    // cast the GAMESS Molecular object to  
    // Chemistry::QC::GaussianBasis::MolecularInterface 
    evalfac = new ClientIntEvalFactory(integral_package_,molecular);  
} 
 
/* 
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 * calculate energy by using the integrals provided by  
 * the specified package. 
 */  
double get_energy() { 
    double f = model.get_energy(); 
    return f; 
} 
 
/* 
* @type the type of the integrals 
* construct the two-level loop structure to calculate all of  
* shell doublets and use the 1e-integral iteratively 
 */ 
void compute_oneei(string type)  
{ 
    // create a ClientIntEval2 object for the specified package 
    ClientIntEval2 client_eval2 = evalfac.get_evaluator2(type); 
   
    // pass the reference to a   
    // Chemistry::QC::GaussianBasis::IntegralEvaluator2 object 
    // to the FORTRAN 77 function 
    gamess_eval2(client_eval2.get_eval2()); 
} 
 
/* 
 * construct the four-level loop structure to calculate all of 
* shell quartets and use the 2e-integral iteratively. 
 */ 
void compute_twoei()  
{ 
    // create a ClientIntEval4 object for the specific package 
    ClientIntEval4 client_eval4 = evalfac.get_evaluator4(type); 
 
    // pass the reference to a   
    // Chemistry::QC::GaussianBasis::IntegralEvaluator4 object 
    // to the FORTRAN 77 function 
    gamess_eval4(client_eval4.get_eval4()); 
 
} 
 

  private: 
    // the name of the package for providing integral calculations 

string integral_package_; 
 
// the full path to the GAMESS input file 
string inputfile_; 
 
// the molecular object stores the basis set information 
GAMESS::GaussianBasis_Molecular molecular; 

 
/*  
 * A GAMESS.Model object for initializing GAMESS computation; 
 * calculating energy, gradient and Hessian. 
 */ 
GAMESS::Model model; 
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}; 
 

The interfaces for underlying FORTRAN 77 wrapper functions 
 
c     ---------------------------------------------------- 
c     @buffer the integral array that needed to reorder 
c     @size the size of the buffer 
c     @type the type of the integral (2-center or 4-center) 
      subroutine games_reorder(buffer,size,type) 
      dimension buffer(size) 
      character type*(*) 
 
c     ---------------------------------------------------------------- 
c     The 2-level loop structure of looping over all shell doublets 
c     @eval2 the memory address of an integral evaluator2 object 
c     @package the package that provides the integral evaluator2  
      subroutine gamess_eval2(eval2, package) 
      integer*8 eval2 
      character package*(*) 
 
c     we will use the different loop structure for different packages 
c     for each iterate, call the compute method of the integral evaluator2 
c     to calculate integrals for a shell doublet.  
 
c     if package = MPQC or NWCHEM, gamess_reorder needs to be called 
c     before the integrals can be used by GAMESS program  
 
c     --------------------------------------------------------------- 
c     The 4-level loop structure of looping over all shell quartets 
c     @eval4 the memory address of an integral evaluator4 object 
c     @package the package that provides the integral evaluator4 
   
      subroutine gamess_eval4(eval4, package) 
 
      integer*8 eval4 
      character package*(*) 
 
c     we will use the different loop structure for different packages 
c     for each iterate, call the compute method of the integral evaluator4 
c     to calculate integrals for a shell quartet.  
 
c     use the FORTRAN 77 binding of integral evaluator4 for calculating 
c     two-electron integrals 
 
c     if package = MPQC or NWCHEM, gamess_reorder needs to be called 
c     before the integrals can be used by GAMESS program  
 
c     --------------------------------------------------------------- 
c     calculate RHF energy by using the integrals calculated from one 
c     of the GAMESS, MPQC and NWChem packages 
 
      subroutine gamess_rhfcl 
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c     copy codes from RHFCL subroutine 
c     modify the calls to ONEEI to call gamess_eval2 
c     modify the calls to TWOEI to call gamess_eval4 
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APPENDIX B. COMMENTS FOR THE COMMON BLOCK “NSHEL” 
-ex- Gaussian exponents, for every symmetry unique primitive 
-cs- through -ci- are s,p,d,f,g,h,i contraction coefficients normally only one of the -cx- arrays 

will be non-zero, for any given exponent in -ex-.  the exception is "L" shells, where both 
-cs- and -cp- will have (different) values. 

-nshell- is the total number of shells (p shell means x,y,z, d shell means xx,yy,zz,xy,xy,yz, 
etc.) the various "K"s define each shell's contents: 

-katom- tells which atom the shell is centered on, normally more than one shell exists for 
every atom. 

-kloc- gives the location of this shell in the total AO basis, please read the example. 
-kstart- is the location of the first exponent and the first contraction coefficient contained in a 

particular shell. Thus, KLOC is an AO counter, KSTART a primitive counter. 
-kng- is the number of Gaussians in this shell, their data are stored consecutively beginning at 

the -kstart- value. 
-ktype- is 1,2,3,4,5,6,7 for s,p,d,f,g,h,i.  note that the value stored in -ktype- for an "L" shell 

is a 2, so that by itself, -ktype- cannot distinguish a "p" from a "L". Thus, KTYPE is one 
higher than the true angular momentum. 

-kmin- and -kmax- are the starting and ending indices of the shell. These are defined as 
 

 

 s p d f g h i L 
Kmin 1 2 5 11 21 34 57 1 
Kmax 1 4 10 20 35 56 84 4 

so you can tell an "L" shell by its running from 1 to 4, namely s,x,y,z, whereas a "p" 
shell runs 2,3,4 for x,y,z. The table above is generated by writing all Cartesian products, 
"maximum powers first", back to back: 

            s,  x,y,z,  xx,yy,zz,xy,xz,yz, 
            1   2 3 4    5  6  7  8  9 10 
            xxx,yyy,zzz,xxy,xxz,yyx,yyz,zzx,zzy,xyz, ... g,h,i 
            11  12  13,  14  15  16  17  18  19  20, ... g,h,i 

An example, to try to make this concrete, is a 6-311G(d,p) basis for the molecule CSiH.  
Just those three atoms, in that order: 

 s L L L d s L L L L d s s s P 

Katom 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

Kng 6 3 1 1 1 6 6 3 1 1 1 3 1 1 1

Ktype 1 2 2 2 3 1 2 2 2 2 3 1 1 1 2

Kmin 1 1 1 1 5 1 1 1 1 1 5 1 1 1 2

Kmax 1 4 4 4 10 1 4 4 4 4 10 1 1 1 4

Kstart 1 7 10 11 12 13 19 25 28 29 30 31 34 35 36

kloc 1 2 6 10 14

 

20 21 25 29 33 37

 

43 44 45 46
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 -kloc- helps point to the right AO index, e.g. the d shell of the Si atom contains AOs 
numbered 37,38,39,40,41,42. kloc(i) = kloc(i-1) + kmax(i) - kmin(i) + 1. total number 
of AOs (NUM in common -infoa-) in this example is 48, from the hypothetical next 
KLOC of 46 + 4 - 2 + 1. 

Clearly -NSHELL- is 15, the number of columns given here. 
 

Note that this example shows you how to tell a -p- from a -L-, even though -ktype- is 2 for 
each. d shells always have 6 members, for spherical harmonics are not taken care of in the 
basis (always a Cartesian Gaussian basis is set up) but rather at the time of varying the MOs 
(either including or omitting the contaminations like xx+yy+zz according to ispher input). If 
our molecule was really CSiH3, with C3v symmetry, the input gave only one of the 
hydrogens. The following shows how does -nshel- change by two more atoms, 

 s s s p s s s P 
katom 4 4 4 4 5 5 5 5 
kng 3 1 1 1 3 1 1 1 
ktype 1 1 1 2 1 1 1 2 
kmin 1 1 1 2 1 1 1 2 
kmax 1 1 1 4 1 1 1 4 
kstart 31 34 35 36 31 34 35 36 
kloc 49 50 51 52

 

55 56 57 58 
Since these are symmetry equivalent, -kstart- points to the original Gaussian details in -ex- 
and -cx-, but these are additional AOs, so -kloc- does go up. -nshell- is now 24, and -num- is 
now 60. a molecule may very well have many hydrogens, perhaps using identical basis sets, 
but every different set of equivalent hydrogens gets separate storage of its 
exponents/contraction coefficients (stored at different -kstart- values). 
 
If the molecule has no symmetry (every atom has a new basis set) then the number of 
primitives is greater or equals the number of atomic orbitals.  A basis function, or atomic 
orbital, those words are the same thing, is a linear combination of at least one Gaussian 
primitive. When the symmetry of the molecule makes atoms equivalent (in C60, all 60 atoms 
are the same), GAMESS stores only one such atom's basis.  So it is possible, but unlikely, 
that the number of Gaussians stored in /NSHEL/ could be smaller than the number of AOs. 
 
We don't care very much about the total number of primitives, so the sum of the KNG array 
is not actually stored! The integral codes loop over NSHELL, picking up the current shell's 
KATOM, KNG, KMIN and so on.  They have an inner loop over the KNG value, and loops 
from KMIN to KMAX so as to do the integrals over all the primitives.  But after the integrals 
are finished, we only care about how many AOs there are, so NUM in /INFOA/ is saved for 
the SCF programs to use. 
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