
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

The component-based application for GAMESS
Fang Peng
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Peng, Fang, "The component-based application for GAMESS" (2007). Retrospective Theses and Dissertations. 14675.
https://lib.dr.iastate.edu/rtd/14675

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14675?utm_source=lib.dr.iastate.edu%2Frtd%2F14675&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

The component-based application for GAMESS

by

Fang Peng

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Ying Cai, Co-Major Professor

Masha Sosonkina, Co-Major Professor
Mark Gordon

Ricky A. Kendall

Iowa State University

Ames, Iowa

2007

Copyright © Fang Peng, 2007. All rights reserved.

www.manaraa.com

UMI Number: 1447527

1447527
2008

Copyright 2007 by
Peng, Fang

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

All rights reserved.

 by ProQuest Information and Learning Company.

www.manaraa.com

 ii

TABLE OF CONTENTS

TABLE OF CONTENTS ... ii

LIST OF FIGURES ... iii

LIST OF TABLES... iv

ABSTRACT ..v

CHAPTER 1. INTRODUCTION..1
1.1 Common Component Architecture ... 4
1.2 Quantum Chemistry .. 5

CHAPTER 2. BACKGROUND...8
2.1 Quantum Chemistry Calculations ... 9

2.1.1 Basic terms.. 11
2.1.2 Other important concepts.. 12

2.2 GAMESS .. 16
2.2.1 GAMESS structures.. 19
2.2.2 DDI ... 22

CHAPTER 3. COMPONENTS IMPLEMENTATION FOR GAMESS25
3.1 CCA Chemistry Interfaces.. 26
3.2 Mechanisms of Creating GAMESS CCA Components.. 30

3.2.1 GAMESS/DDI mechanism... 31
3.2.2 GAMESS/DDI/MPI mechanism... 34

3.3 GAMESS CCA Components.. 36
3.3.1 The design of GAMESS wrapper functions ... 37
3.3.2 The design of GAMESS CCA components.. 43
3.3.3 The structure of GAMESS CCA components .. 43

CHAPTER 4. INTEGRATION ..46
4.1 The Integration of the Integral Calculation... 47
4.2 The Design of the GAMESS Client-Side ... 50

CHAPTER 5. PERFORMANCE EVALUATION...55
5.1 TAU Performance Tools... 55
5.2 Test the Performance Overhead of the CCA Framework... 56
5.3 The Load Balance in Two-Electron Integral Computations 57
5.4 Performance Evaluation for Integral Computations ... 61

CHAPTER 6. DISCUSSION AND CONCLUSION ...66

ACKNOWLEDGEMENTS...70

REFERENCES ..71

APPENDIX A. THE GAMESS CLIENT-SIDE INTERFACE ...73

APPENDIX B. THE COMMENTS FOR THE COMMON BLOCK “NSHEL”85

www.manaraa.com

 iii

LIST OF FIGURES
Figure 1. Illustration of SCF calculations 14

Figure 2. Memory allocation in GAMESS 20

Figure 3. The execution sequence of GAMESS main subroutine 22

Figure 4. DDI communication mechanism 23

Figure 5. The execution sequence of the DDI kickoff program 24

Figure 6. The structure of CCA chemistry integral interfaces 28

Figure 7. An example of using MolecularInterface 29

Figure 8. An example of using CCA chemistry components 30

Figure 9. The GAMESS/DDI communication model 33

Figure 10. The GAMESS/DDI/MPI communication model 35

Figure 11. The componentization of one-electron integral calculations in GAMESS 42

Figure 12. The componentization of two-electron integral calculations in GAMESS 42

Figure 13. The structure of GAMESS CCA components 45

Figure 14. The client-side design for GAMESS computations 54

Figure 15. The scalability of the GAMESS energy calculation with & without CCA 57

Figure 16. The loop structure in GAMESS TWOEI subroutine 58

Figure 17. The performance of the load balance in GAMESS TWOEI subroutine 60

Figure 18. The package dependence 68

www.manaraa.com

 iv

LIST OF TABLES
Table 1. The subroutines for computing integrals 40

Table 2. The wall-clock time (sec) for the energy calculation with & without CCA 57

Table 3. Test the dynamic load balance in GAMESS CCA components 61

Table 4. Test GAMESS integral computations 63

Table 5. Wall-clock times (sec) for two-electron integral computations 64

Table 6. Wall-clock times (sec) for a computation with GAMESS & MPQC 65

www.manaraa.com

 v

ABSTRACT
GAMESS, a quantum chemistry program for electronic structure calculations, has

been freely shared by high-performance application scientists for over twenty years. It

provides a rich set of functionalities and can be run on a variety of parallel platforms through

a distributed data interface. While a chemistry computation is sophisticated and hard to

develop, the resource sharing among different chemistry packages will accelerate the

development of new computations and encourage the cooperation of scientists from

universities and laboratories. Common Component Architecture (CCA) offers an

environment that allows scientific packages to dynamically interact with each other through

components, which enable dynamic coupling of GAMESS with other chemistry packages,

such as MPQC and NWChem. Conceptually, a computation can be constructed with “plug-

and-play” components from scientific packages and require more than componentizing

functions/subroutines of interest, especially for large-scale scientific packages with a long

development history. In this research, we present our efforts to construct components for

GAMESS that conform to the CCA specification. The goal is to enable the fine-grained

interoperability between three quantum chemistry programs, GAMESS, MPQC and

NWChem, via components. We focus on one of the three packages, GAMESS; delineate the

structure of GAMESS computations, followed by our approaches to its component

development. Then we use GAMESS as the driver to interoperate integral components from

the other two packages, and show the solutions for interoperability problems along with

preliminary results. To justify the versatility of the design, the Tuning and Analysis Utility

(TAU) components have been coupled with GAMESS and its components, so that the

performance of GAMESS and its components may be analyzed for a wide range of system

parameters.

www.manaraa.com

 1

CHAPTER 1. INTRODUCTION
High performance scientific simulations in a wide range of areas, such as quantum

chemistry, climate, high energy physics, earth observation and bioinformatics, often solve

very complicated problems and require a large amount of resources. Most of the underlying

programs for the scientific simulations have been under development for a long period of

time; used different computing languages and programming models. As the new algorithms,

methodology, and programming models in an area being created and upgraded, the

corresponding scientific programs become more and more complicated. While each program

is complicated by its own, the complexity can be hard to manage when several programs

need to cooperate to perform the same task. The language interoperability also becomes an

issue.

The Component Based Software Engineering (CBSE) aims to manage the complexity

of a software system by using “plug-and-play” components. Those components are deployed

based on software functionality and can interact with each other on component-based

frameworks through the well-defined interfaces. The users are able to use the components

without knowing which programming languages are used for implementing each component.

The existing commercial available component-based frameworks include Microsoft's

Component Object Model (COM) [1], the Object Management Group's Common Object

Request Broker Architecture (CORBA) Component Model [2], and Sun's Enterprise

JavaBeans [3]. However, none of those frameworks can handle high-performance

architectures which are required for scientific programs.

Common Component Architecture (CCA) [4] was just designed for High

Performance Computing (HPC). CCA offers an opportunity for scientific packages to

dynamically interact with each other without manually dumping files, converting data

formats or painstakingly coupling codes on a case-by-case basis. With CCA, scientists are

able to construct new computations or improve the performance of their software by using

components provided by other research groups through well-defined interfaces. This

potential of interoperability encourages application scientists from different scientific

domains to explore mechanisms to couple existing packages that offer different computing

www.manaraa.com

 2

capabilities. Without such a component model, data exchange between two scientific

packages can only be accomplished through a large amount of file recoding.

The standards of CCA are defined by the CCA Forum [5], a group of scientists from

different national laboratories and academic institutes who are researchers in the high

performance computing community. The CCA Forum aims to define the standards for the

component-based frameworks for the high performance computing. It has developed several

tastes of CCA frameworks, the supporting infrastructure and some general-purpose

components. The language interoperability of CCA is enabled by Babel [6], a tool for solving

the interoperability of components that are implemented in different programming languages

such as FORTRAN, C, C++, Python, and Java. Babel relies on the Scientific Interface

Definition Language (SIDL) for defining interfaces for scientific components.

Quantum chemistry is one of the scientific disciplines that are actively involved in

exploring the interoperability capability offered by CCA. The complexity in quantum

chemistry computations results in a large number of noncommercial packages developed by

research laboratories and universities (The General Atomic and Molecular Electronic

Structure System - GAMESS [7], MPQC [8], and NWChem [9] are three major quantum

chemistry programs from DOE), each with unique capabilities and deficiencies. The

development of a new method is usually very time-consuming thus it is an important task to

integrate capabilities of different packages to develop new computations that are not possible

with any single package.

While CCA offers an environment for scientific packages to interact with each other,

a package must be componentized before it is able to provide/use components to/from other

packages. With the long development history of quantum chemistry programs, efforts to their

componentizing cannot be accomplished by any single research group. Scientists must join

together to define a set of standardized interfaces and data structures for computations of

interest, and then packages are to be componentized accordingly.

Even with the standardized interfaces and techniques provided by CCA forum,

componentizing a package with a long development history itself poses a big challenge,

which must be conquered before enabling interoperability between packages. While

componentizing quantum chemistry programs on coarse-grain level was conducted in

www.manaraa.com

 3

previous studies [10], another important and useful approach for the quantum chemistry

community is to componentized low-level computations such as molecular integral

evaluations.

Molecular integral evaluation is a fundamental problem of all traditional quantum

chemistry computations. The integral facilities available within one individual quantum

chemistry program may lack one or more features of the others, limiting the range of

methods which can be implemented and made available to users of the package. Because

writing efficient code for computing a new type of molecular integral requires significant

development effort, it is natural to share the integral facilities as components. The obvious

benefit of sharing integral capabilities among various packages is the ability to implement

new theoretical methods very rapidly.

In this thesis, I will give the background knowledge of this research in Chapter 2,

including the basic concepts of quantum chemistry, the CCA terms, the parallel method used

in GAMESS, and some special features of GAMES. In Chapter 3, several important CCA

interfaces will be introduced and the corresponding components for each chemistry package,

especially for GAMESS, will be explained in details. We developed the GAMESS CCA

interface in two different parallel models: GAMESS/DDI and GAMESS/DDI/MPI models.

GAMESS uses the Data Distributed Interface (DDI) [11] as its parallel communication

mechanism, which mainly relies on TCP/IP sockets for communication. Integrating the

GAMESS/DDI system with CCA is our first attempt to integrate GAMESS with the CCA

framework. Besides TCP/IP sockets, the Message Passing Interface (MPI) [12] can also be

used for DDI to enable GAMESS communications and a different mechanism has been

developed for integrating GAMESS with MPI. In this mechanism DDI depends on MPI,

instead of TCP/IP sockets, as the communication method. Since MPI is a widely used

message passing interface, the GAMESS CCA components in this model are easily

compatible with other components within CCA frameworks.

The componentizing mechanisms for several GAMESS computations: energy,

gradient, Hessian, and integral computations, will be presented. The energy, gradient and

Hessian computations have been incorporated into the GAMESS.ModelFactory component

and the integral computation has been implemented in GAMESS.IntegralEvaluatorFactory

www.manaraa.com

 4

component. The strategies for wrapping the existing GAMESS code and implementation

details of those GAMESS CCA components will be demonstrated.

Chapter 4 will cover the integration process of GAMESS with other scientific

packages, including MPQC and NWChem, in the integral calculation. The discussion of the

difficulties we encountered and preliminary experiment results will be presented in Chapter

5. In Chapter 6, we will conclude the research we have done and give the future works.

1.1 Common Component Architecture
The purpose of Common Component Architecture is to facilitate and promote the

development of high performance scientific simulations with little programming

requirements [4]. The CCA standard specifies just a minimal set of services that is required

to be CCA compliant [5]. This design philosophy ensures the scientists focus on the

implementation of components for a program instead of worry much about the interaction of

components from different packages.

In the Common Component Architecture, the components are basic units of software

that are composed together to provide a run-time component environment [5]. Instances of

components are created and managed within a framework, which provides the basic services

for components to operate and communicate with each other [5]. Ports are the fully abstract

interfaces, through which components interact with each other and with the encapsulating

framework [5]. A component must declare its Provides port to provide its own functions or

services for other components to use, and also registers its Uses ports to connect references to

Provides ports that are provided by other components or by the containing framework [5].

The communications between different components or between components and frameworks

are enabled by connecting matched Provides-Uses port pairs through the framework.

Based on the requirements and restrictions from a wide range of scientific researches,

several frameworks that compliant to CCA standards have been developed, each has unique

features. There are two major types of CCA frameworks: direct-connect and distributed

frameworks [5], where direct-connect frameworks do not have ability to manage components

distributed on a wide area network, and distributed frameworks supports distributed

components [5]. CCAFFEINE [14], developed by Sandia National Laboratory, is one of the

www.manaraa.com

 5

most commonly used CCA frameworks. It is a light-weight direct-connect framework that

supports SPMD (Single Program Multiple Data) parallel computing model. Since

CCAFFEINE was first developed, the CCA forum has continually upgrade it and provided

tutorials and technical helps for helping scientists in a variety of area to create scientific

components, it is the best choice for us to start the component development for quantum

chemistry programs. Other CCA frameworks, such as DCA [15], DECAFE [16], CCAIN,

which are direct-connect frameworks, and XCAT-JAVA [17], XCAT-C++ [18] and

SCIRUN-2 [19], which are distributed frameworks, are also popular in some other research

areas. I will only focus on the design of CCAFFEINE as it is the only one has been used for

this research. In the future, we may extend chemistry components to be able to run on other

CCA frameworks.

CCAFFEINE uses the peer component model, in which each component is treated

independently without in a hierarchal relationship with other components. Components

attach to a framework and connect with other components through Provides-Uses port pairs,

which make them easier to be added or unplugged to/from a framework. When a

CCAFFEINE framework is running in a parallel environment, each process has its own

instance of a CCA framework, and an identical set of component instances and connections

are loaded into each framework [4]. The set of similar component instances that are

distributed across parallel processes can communicate with each other by using any available

communication system (i.e. MPI, PVM [20], Global Arrays [21], or shared memory), while

each framework instance that contains the identical set of component instances and

connections manages the interactions among component instances within its own process [4].

Different sets of component instances are allowed to use different communication systems

simultaneously under the same framework [4]; this is useful for the integration of legacy

codes under CCA frameworks since legacy software usually has its own communication

mechanisms.

1.2 Quantum Chemistry
Quantum chemistry is a subfield of theoretical chemistry that uses both physics and

mathematical methods to solve the electronic structure of the molecule [22]. Molecules are

www.manaraa.com

 6

composed of positive charged nuclei and negative charged electrons. Different combinations

of nuclei and number of electrons or different geometrical arrangements of nuclei in space

form different kinds of molecules. Several primary problems that the quantum chemistry

need to solve are: the geometrical arrangements of the nuclei that correspond to stable

molecules; their relative energies and properties; the rate by which one stable molecule can

transform into another; and the time dependence of molecular structures and properties [23].

However, the only systems that could be calculated correctly by using the quantum chemistry

theory are those with one or two electrons, such as molecule. Therefore, different

approximations are used for finding approximate solutions for different purposes.

+
2H

There are two kinds of approximation methods in quantum chemistry: ab initio and

semi-empirical. If solutions are generated without reference to experimental data, the

methods are usually called ab initio (Latin: “from the beginning”) [23]. The ab initio method

is usually used for solving smaller molecules, since the calculations are very complex and

time consuming, scaling formally as the fourth power of the size of the molecules. The semi-

empirical method avoids some time consuming calculations, but uses some parameters

generated from experimental measurements or by performing ab initio calculations [23].

GAMESS, MPQC and NWChem are three of the ab initio quantum chemistry programs.

The advances in both computer hardware and software have enabled some of

theoretical methods to be translated into computer programs in order to produce real data that

cannot otherwise be calculated by human hands. With computer programs, chemists do not

have to remember every theoretical formula or understand every complicated calculation.

They just enter the molecular geometry, the type of calculations, and some other features of a

molecule, and wait for the results computed by computer programs. However, even for the

same theoretical method, with different algorithms, hardware or computing models, different

results may be produced. This variety of computations requires the users to choose the right

set of parameters and methods to be able to get valuable results for a problem. Chemists

often use the computing results to evaluate a large pool of experimental results or predict

certain properties a molecule [23], instead of using it as the exact answers. There are many

possible molecules and associate properties, but only a little portion of them have been

evaluated by calculation or experiment. With the development of theoretical methods, better

www.manaraa.com

 7

algorithms, and the increasing computer power, the chemistry calculations can apply to more

problems and become more accurate.

Because of the complexity of quantum chemistry calculations, many programs have

been created by national laboratories and universities, while each program contains special

capabilities. It is very complicated and time-consuming to create a new computation from

scratch in a chemistry program, which may be already implemented in another program. The

best computations provided in each package can be accessed by utilizing the interoperability

capability provided by CCA through CCA components.

www.manaraa.com

 8

CHAPTER 2. BACKGROUND
GAMESS, NWChem and MPQC are three fundamental chemistry packages that are

developed under the Department of Energy (DOE). The General Atomic and Molecular

Electronic Structure System (GAMESS) is an ab initio quantum chemistry program, which

was originally formed from HONDO5 and other programs at the Department of Energy’s

National Resource for Computations in Chemistry in the late 1970’s [7].

Most of the source code of GAMESS is designed with FORTRAN 77. While

portability can be achieved through this design (every modern cluster has a FORTRAN 77

compiler), incorporating an external module or interacting with other scientific packages can

be very difficult since scientific packages developed in recent years seldom use FORTRAN

77 exclusively.

The Massively Parallel Quantum Chemistry Program (MPQC), written in the C++

programming language, computes properties of atoms and molecules from first principles.

MPQC has been designed as a massively parallel program from the beginning, and it can run

on a wide range of platforms, from UNIX workstations, symmetric multi-processors, to

massively parallel architectures.

The class libraries underlying the MPQC program are written in C++ using an object-

oriented design. Following a class hierarchy very similar to the CCA integral interfaces [24],

the integral packages are encapsulated by integral evaluator and integral factory interfaces

described within the MPQC documentation [25]. This encapsulation insures a clean

separation of the integrals code which greatly simplified packaging the integral packages

within MPQC as stand-alone components.

NWChem is a quantum chemistry program that is written in FORTRAN 77. It uses an

object-oriented design and programming approach to facilitate functionality reuse and hide

internal data. One example of this is the integral abstract programming interface (API) of

NWChem. The API exposes only specific aspects of the integral computation to the

programmer and hides many of the details with regard to which integral programs are used

(there are currently four different algorithms within NWChem) and how the computations are

done. This API has initialization routines that require the geometry and the basis set as well

www.manaraa.com

 9

as a termination routine that cleans up and terminates the integral computations. There is a

set of routines based on the type of integrals to be computed (energy, first or second

derivative). In addition, the API allows the programmer to select the accuracy (or the

threshold for radial cutoffs) for the integrals. Once the API has been initialized there are

specific routines to tell the programmer how much memory is needed for the buffers required

by the API and then to call each of the different types of integrals that are available. This

architecture allows any improvements or new integral routines to be automatically realized

throughout the whole of NWChem.

NWChem also has basis set objects and geometry objects that must be properly

populated so that the integral computations work. The population of these objects is usually

initiated through an input file although they can also be created through functions associated

with the objects. This is particularly useful in the context of CCA.

Each program has very different functionalities while sharing some common

calculations. Instead of recoding a method from one program to make it work in another

program, CCA provides a method to allow each program to access the functionalities of the

other programs through pre-defined interfaces. In this research, we will focus on one of the

chemistry programs: GAMESS, to detail the structure of the GAMESS computations, the

communication model, and the procedure of componentizing GAMESS. As the base of

understanding our work, several primary terms and calculations in quantum chemistry will be

introduced in this section, followed by the structure of GAMESS computations and the

parallel mechanisms of the Data Distributed Interface (DDI).

2.1 Quantum Chemistry Calculations
The heart of quantum chemistry theories is the time-independent Schrödinger

equation, which in short-hand operator form [23] is given as

Ψ=Ψ EH (2.1)

Where H is a Hamiltonian operator for a system of nuclei and electrons and it is independent

of the time; E is the total energy; Ψ is the wave function that display both wave and particle

characteristics of electronics. The square of the wave function gives the probability of finding

the electron at a giving position [23].

www.manaraa.com

 10

The time-independent Schrödinger equation is used to solve the wave function for

electrons and nuclei in space and their energies under certain circumstances. For every time-

independent Hamiltonian operator, H, there exists a set of quantum states, Ψn,, known as

energy eigenstates, and corresponding real numbers En satisfying the eigenvalue equation

[22],

nnn EH Ψ=Ψ || (2.2)

The real number En is the eigenvalue of the Hamiltonian, also the total energy. The

Hamiltonian operator contains operators for kinetic (T) and potential (V) energy of the nuclei

and electrons.

nneeneentot VVVTTH ++++= (2.3)

∑ ∇=
a

a
a

n M
T 2

2
1

 (2.4)

∑ ∇−=
N

ieT
1

2

2
1

 (2.5)

∑∑ −
−=

N

i a ia

a
ne rR

ZV
| (2.6)

∑∑
> −

=
N

i

N

ij ji
ee rr

V
||

1
 (2.7)

∑∑
> −

=
a ab ba

ba
nn RR

ZZV
|| (2.8)

Ra is the position vector for nuclei a. ri is the position vector for electron i. Za is the

atomic number of nuclei a. The Laplacian operator and involve differentiation with

respect to the coordinates of electron i and nuclei a [22]. Tn is the operator for the kinetic

energy of nuclei, Te is the operator for the kinetic energy of electrons, Vne is the operator for

the coulomb attraction between nuclei and electrons, Vee is the operator for the repulsion

between electrons, and Vnn is the operator for the repulsion between nuclei.

2
i∇ 2

a∇

As nuclei are much heavier than electrons and they move very slowly compare to

electrons do, it is a good approximation to consider electrons moving in the field of fixed

nuclei [23]. The Schrödinger equation is then separated into two parts: one part describes the

www.manaraa.com

 11

electronic wave function for a fixed nuclear geometry and another part describes the nuclear

wave function [23]. This separation is called the Born-Oppenheimer (BO) approximation.

Within the Born-Oppenheimer approximation, the kinetic energy of the nuclei Tn can

be neglected and the repulsion between the nuclei Vnn can be considered as a constant. Thus,

the remaining terms are called the electronic Hamiltonian. The electronic Hamiltonian

operator, He, for N electrons [23] is

nneeneee VVVTH +++= (2.9)

mpentot HHTH ++= (2.10)
2

12
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∇−= ∑

=

N

i
i

tot
mp M

H (2.11)

Hmp is called the mass-polarization, where Mtot is the total mass of all the nuclei and the sum

is over all electrons. By the Born-Oppenheimer approximation, He depends only on the

nuclear coordinates in space and not on their momentum. Thus, the electronic Schrödinger

equation depends parametrically only on the nuclear coordinates [23].

The Born-Oppenheimer (BO) approximation introduces very small errors for most

systems, while some effects have been implicitly neglected. Some correctness approaches

can be performed after solving the electronic Schrödinger equation. The further details have

been introduced in the classical quantum chemistry book: “Modern Quantum Chemistry:

Introduction to Advanced Electronic Structure Theory” that is written by Attila Szabo and

Neil S. Ostlund [22].

2.1.1 Basic terms
The most common type of ab initio calculation is called a Hartree-Fock (HF)

calculation, which is an approximate method for determining the ground-state wave function

and ground-state energy of a quantum many-body system [22]. According to the variation

principle, the approximate solutions for energies are always larger than or equal to the exact

ground state energy, which means that the lower the energy, the better the wave functions

[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the

approximate wave functions that minimizing the energies greater than or equal to the exact

ground state energy. Considering the wave functions that depend on a set of parameters, we

www.manaraa.com

 12

can calculate the “best” wave functions by minimizing the energy that calculated by using a

given set of parameters. The calculated energy equals to the exact ground state energy only if

the given wave functions are the exact electronic spatial coordinates for the ground state [22].

The Hartree-Fock method

The most common type of ab initio calculation is called a Hartree-Fock (HF)

calculation, which is an approximate method for determining the ground-state wave function

and ground-state energy of a quantum many-body system [22]. According to the variation

principle, the approximate solutions for energies are always larger than or equal to the exact

ground state energy, which means that the lower the energy, the better the wave functions

[22]. The Hartree-Fock method aims to calculate the approximate energies by finding the

approximate wave functions that minimizing the energies greater than or equal to the exact

ground state energy. Considering the wave functions that depend on a set of parameters, we

can calculate the “best” wave functions by minimizing the energy that calculated by using a

given set of parameters. The calculated energy equals to the exact ground state energy only if

the given wave functions are the exact electronic spatial coordinates for the ground state [22].

The basis set approximation

In practices, the exact wave functions are impossible to get except for very small

systems, such as one and two electron systems. Therefore, a set of known basis functions are

normally used to express the unknown approximate wave functions. The basis function is a

linear combination of primitive Gaussians, all of the same type and all on the same nucleus,

but with different exponents:

∑ −=

k

rnml
k

kezyxd
2δ

ααχ
 (2.12)

Where k is the index of the primitive Gaussians, dka is a contraction coefficient, kδ is the

exponent, x, y, z are the Cartesian coordinates of the nucleus, and . The

angular momentum of the shell type (S, P, D, F, G, …) is given by l + m + n. For example,

when l + m + n = 0, we get an S-type basis function,

2222 zyxr ++=

www.manaraa.com

 13

∑ −=

k

r
k

ked
2δ

ααχ
 (2.13)

And, when l + m + n = 1, we have three types of different basis functions,

∑ −=

k

r
k

kxed
2δ

ααχ
 (2.14)

∑ −=

k

r
k

kyed
2δ

ααχ
 (2.15)

∑ −=

k

r
k

kzed
2δ

ααχ
 (2.16)

The formulas (2.14), (2.15) and (2.16) correspond to the Px, Py and Pz basis functions,

respectively. Each set of basis functions are referred as an Atomic Orbital (AO). We define a

Molecular Orbital (MO) as a linear combination of atomic orbitals. The MO may be written

as [23]:

∑=
M

ii c
α

αα χφ (2.17)

Where is a molecular orbital that forms from a linear combination of M atomic orbitals, iφ

αχ ; is a MO coefficient. The Hartree-Fock equations may be written as [23]: icα

∑∑ =
M

ii

M

ii ccF
α

αα
α

αα χεχ (2.18)

Where Fi is called the Fock operator, iε is the energy.

The Self-Consistent Field (SCF) techniques

The Hartree-Fock equations in the atomic orbital basis may be given in [23]:

βααβ χχ || FF = (2.19)

The F matrix contains the Fock matrix elements. Each Fαβ element is given as:

∑+=
λδ

λδαβλδαβαβ DGhF (2.20)

Where denotes integrals involving the one-electron operators; denotes the two-

electron integrals involving the electron-electron repulsion operator; denotes the

occupied MOs of coefficients, which is often referred as a density matrix [23]. The density

αβh αβλδG

λδD

www.manaraa.com

 14

matrix can only be determined by diagonalizing the Fock matrix. On the other hand, the Fock

matrix is only determined when all the occupied MOs coefficients are known. Therefore, the

Fock matrix may be solved by starting from guessing a set of MOs coefficients and

computing the Fock matrix literately.

Figure 1 shows how the Fock matrix is calculated by using its own solutions. First,

the initial parameters (e.g. basis functions, molecular geometry, etc) are fed in and all one-

and two-electron integrals are calculated. Then a suitable start guess for the MO coefficients

are generated. The initial density matrix is calculated. The Fock matrix is formed from

integrals and density matrix. By diagnosing the Fock matrix, the eigenvectors contain the

new MO coefficients. This new MO coefficients will be fed into the system to form a new

density matrix. If it is sufficiently close to the previous density matrix, we are done,

otherwise we need to iteratively calculate the Fock matrix and generate new density matrix

[23]. Thus, the Hartree-Fock method is also called the Self-Consistent Field (SCF) method.

Obtain initial guess for
density matrix

For Fock matrix Two-electron integrals

Iterate Diagonalize Fock matrix

Form new density matrix

Figure 1. Illustration of the SCF procedure [23]

The Hartree-Fock method usually is considered as the starting point for more

sophisticated methods. Either more approximations will be used, leading to a Semi-empirical

method, or more basis functions are used to get a more accurate solution [23].

www.manaraa.com

 15

The evaluation of gradient and Hessian

The change in energy for moving a nucleus can be written as a Taylor expansion [23].

L+−
∂
∂

+−
∂
∂

+−
∂
∂

+= 3
03

3
2

02

2

00)(
6
1)(

2
1)()()(RR

R
ERR

R
ERR

R
ERERE (2.21)

Where R is the nuclear geometry. The first derivative,
R
E
∂
∂ is the gradient g, the second

derivative, 2

2

R
E

∂
∂ is the force constant (Hessian) H etc [23]. A point is a stationary point if the

gradient at that point is zero. If the R0 geometry is a stationary point, the force constant

matrix may be used for evaluating harmonic vibrational frequencies and normal coordinates,

q [23].

One- and two-electron integrals

The calculation of one-electron integrals (1- or 2-center integrals, where a center

refers to a specific atom in a molecule) and two-electron integrals (1-, 2-, 3-, or 4-center

integrals) is the basis of constructing the Fock matrix in any quantum chemistry program that

uses the Self-Consistent Field (SCF) method.

Consider a molecule with N electrons. The nuclear-nuclear repulsion is a constant for

a given nuclear geometry. The nuclear-electron attraction is the sum of terms, each depends

only on one electron coordinate since the nuclei are fixed according to the Born-

Oppenheimer (BO) approximation. The same holds for the electron kinetic energy. The

electron-electron repulsion depends on two-electron coordinate. The operators may be

collected according to the number of electron indices [23].

hi = ∑ −
−∇−

a ia

a
i rR

Z
||2

1 2 (2.21)

gij = ||
1

ji rr − (2.22)

He = (2.23) ∑ ∑∑
= = >

++
N

i

N

i

N

ij
nniji Vgh

1 1

The one electron operator hi describes the motion of electron i in the field of all

nuclei, and gij is the two electron operator giving the electron-electron repulsion. The one-

www.manaraa.com

 16

and two-electron integrals in the atomic basis [23] are given in Eqs. (2.24) and (2.25),

respectively:

() () () ()∫ ∑∫ −

+⎟
⎠
⎞

⎜
⎝
⎛ ∇−=

a a

a dr
rR

Zdrh 1
1

1
2 1

||
11

2
11|| βαβαβα χχχχχχ

 (2.24)

() () () ()∫ −

= 21
21

21121|| drdr
rr

g δβγαδβγα χχχχχχχχ
 (2.25)

Where χ is a basis function (or Atomic Orbital, or AO); α, β, γ, and δ are the indexes of

the basis functions; h is the one-electron operator and g is the two-electron operator.

In practice, integrals are calculated in batches, where a batch is a collection of

integrals having the same exponent (in this thesis, we use the term Gaussian shell or shell to

represent a set of basis functions with the same exponent) [23]. For example, a <pp|pp> type

batch has 81 individual integrals, where the basis function for a P-type shell has 3 types

(3*3*3*3 = 81). We usually call a batch of one-electron integrals a shell doublet and a batch

of two-electron integrals a shell quartet.

In short, to compute the one- and two-electron integrals, we need the one-electron

operator, the two-electron operator, the basis set information, and the coordinates of the

atoms in the molecule (molecular geometry). Different packages may use different

techniques and can handle different sets of basis functions to calculate integrals.

2.1.2 Other important concepts
Use of symmetry. The group theory is a mathematical tool that often used in

quantum chemistry for greatly simplifying applications by exploring the symmetrical

properties in molecules [26]. The symmetric properties of a molecule can be identified by

some symmetry operations that are performed on the molecule such that the position and

orientation of the molecule before and after the operations are identical [26]. Those

symmetry operations are grouped and labeled with specific symbols, including a proper axis

of rotation (Cn, n = 1,2,3, ...), the reflection through a plane (s), inversion through a center

(i), the rotation about an axis followed by reflection through a plane perpendicular to that

axis () [26]. For easily classifying the possible symmetrical operations associate with a

molecule, the symmetry operations are grouped into different “point group”. By entering a

k
nS

www.manaraa.com

 17

point group, a quantum chemistry program can quickly decide to ignore some computations

that will produce the same results due to the use of symmetry. For example, many one- and

two-electron integrals for Fock operators can be ignored if the suitable linear combinations of

basis functions have been formed (symmetry adapted functions) [23]. Almost all quantum

chemistry programs use the symmetry to reduce the computation cost. Therefore, the use of

symmetry is an important optimizing approach for a chemistry program and should be

incorporated into the associate component implementation.

Integral screening. Integral screening is a technique to ignore calculating integrals

that are estimated to have little or no contribution to the final results of the Fock matrix [23].

In practices, integral screening is normally done at the batch level, when the largest term of

an integral batch is smaller than a given cut-off, the whole batch will be neglected [23].

Integral screening techniques are normally used as an optimizing mean in quantum chemistry

programs, although the cut-off or thread hold for screening out integrals may be different in

different programs.

Conventional & direct SCF. The number of two-electron integrals grows as the

fourth power of the size of the basis set (the number of total basis functions, M). There are 8

different permutations for a two-electron integral <x1x2|x3x4> that are identical, so the total

number of integrals can be less (approximately 1/8 of 4M) [23]. However, the disk space or

memory that required for storing all the integrals will increase quickly while the size of the

molecule increases. For example, a basis set with 100 basis functions generates ~

integrals (each is a double precision floating point number), requiring ~ 100 Mbytes of disk

space or memory [23]. When the number of basis functions grows to 200, there will be

~ integrals, and the required disk space or memory grows to ~ 1.5 Gbytes. When the

size of a molecule is relative small, it may be possible for all the integrals to be stored in

memory. This kind of approach is very efficient for performing a Hartree-Fock calculation.

However, for larger molecules, the disk space was the only choice. In a conventional method,

all of the integrals will be computed at once and stored in the disk for later calculations. In a

direct method, the integrals will be computed and used immediately at each SCF iterate

without storing to or reading from the disk. Traditionally, the conventional method was used

for large molecules when a large amount of disk space was required and the performance of

6105.12 ×

61025×

www.manaraa.com

 18

CPUs was relatively slow. As the performance of CPUs increases quickly relative to the

speed of the disk I/O, it is quite normal for direct SCF jobs to be faster than conventional

SCF jobs.

2.2 GAMESS

GAMESS is able to solve a wide range of quantum chemistry computations including

Hartree-Fock (HF) wave functions (RHF, ROHF, UHF), GVB, and MCSCF using the self-

consistent field method [7]. It is installed on many high performance computing systems,

including those at most DOE, DOD, and NSF supercomputer centers, many academic

institutions, and widely in the private sector. It is also part of the standard benchmark suites

employed, for example, by NERSC, by the High Performance Computer Modernization

Program, and by several computer companies (e.g., IBM). By 2005, GAMESS had grown to

roughly 650,000 lines of FORTRAN [27] and the number of GAMESS users is estimated to

be on the order of 100,000.

Back in 1970’s when GAMESS was developed; the top-down structured

programming model was the primary software engineering methodology. In a top-down

program, a large problem is broken into several sub-problems with each subprogram act

independently to solve a sub-problem. Each subprogram in turn can be broken into smaller

programs, and eventually, the flow of control reaches down to problems that can be solved

directly, without further discompose. This programming model is simple and easy to use.

However, the lack of data structures and the object-oriented design makes the code hard to be

reused.

With such a top-down structure, componentizing GAMESS is not as easy as

componentizing an object-orient program. We have to reorganize the structure of several

GAMESS computations and comply with its parallel mechanisms to be able to integrate

GAMESS and CCA frameworks. Since we cannot modify the original GAMESS codes, one

strategy we used is to create an extra layer of codes – wrapper functions, to rewrite some

GAMESS computations based on the original GAMESS codes. The methods from CCA

interfaces invoke the wrapper functions, in stead of using GAMESS subroutines directly. The

details about the wrapper functions and the CCA interfaces for GAMESS will be introduced

www.manaraa.com

 19

in the next chapter. In this section, some basic knowledge about GAMESS computations will

be presented, including the structures of GAMESS computations, the memory allocation

strategies, and the communication mechanisms for the Distributed Data Interfaces (DDI).

2.2.1 GAMESS Structures
A GAMESS computation starts by reading user input options from an external input

file. GAMESS groups related input options into many namelist groups, and users have to

follow the specified format and use pre-defined key words to customize the input

information. The detailed input description can be found in the documents along with the

GAMESS distributions.

Among the user input options, the type of wave functions (the theory), the basis sets

and the molecular geometry are three kinds of the basic information that are required for all

computations. In our experiments, we used the SCF theory for all of the computations since it

is the starting point for more complicated or more accurate calculations. GAMESS can read

basis sets from three different sources: from basis sets that are normally stored in GAMESS

source code specified by the $BASIS group, from the $DATA group (both $BASIS and

$DATA are groups of user input options), or from an external file. If the $BASIS group is

omitted, the basis set must be given in the $DATA group input. The $DATA group describes

the global molecular data such as point group symmetry, nuclear coordinates and possibly the

basis set.

The memory allocation

When GAMESS starts, it allocates a large pool of memory from the system; the

amount of memory can be decided by users from an input file or by the default value. If the

memory is initialized correctly, a function can requests the amount of memory that is less

than the available memory, and GAMESS will dynamically allocate the required amount of

memory from the memory pool to the requester. This memory will be returned to the

memory pool after being used and released. Figure 2 shows an example of this dynamical

allocation of memory. The blue rectangle is the large memory pool allocated for GAMESS

initially, which includes the part from the memory location a to the memory location z. When

subroutine1 needs to create an array of dimension size1, it will submit a request, request1, for

www.manaraa.com

 20

allocating a memory of size size1, where b = a + size1. If size1 is less than the available

memory, the memory from the location a to the location b will be reserved for array1. Again,

if subroutine1 sends another request for allocating memory of size2 for array2, where c = b +

size2 and c is less than z, the memory from the location b to the location c will be reserved

for array2. The memory from the location c to the location z is still available. The requests

for returning the memory of array1 and array2 have to be called later to avoid the memory

leaking error.

Pass arrays between subroutines

Since there are no pointers or references used in FORTRAN 77, GAMESS passes the

start location of an array in the memory pool and the size of the array to another subroutine

as a parameter with the type of integer. The passed memory location in the other subroutine

will be declared as an array instead of an integer. For example, when a subroutine,

subroutine2, needs to use array1 and array2 (Figure 2) that allocated in subroutine1, the

following two steps will be needed:

a. in subroutine1, call subroutine2 by
CALL SUBROUTINE2(a, b, size1, size2)

b. in subroutine2,
SUBROUTINE2(a, b, size1, size2)

dimension a(size1), b(size2)

a b c z

Availablearray1 array2

request1 request2

subroutine1

size1 size2

Figure 2. Memory allocation in GAMESS

www.manaraa.com

 21

In this way, a and b can be used in subroutine2 as arrays. The similar strategy for

passing arrays between subroutines is also used in constructing GAMESS wrapper functions.

The sequence of a GAMESS computation

A GAMESS computation starts from the main subroutine and goes to a pre-defined

branch based on the type of the computation. The global information, such as the program

configuration, the basis set information and molecule coordinates, is stored as common

blocks to be shared between subroutines. For some computations, intermediate data are

stored as disk files to be used iteratively. The approach that GAMESS uses to handle global

information complicates the componentizing process since we cannot simply pass pointers to

global information between subroutines as in other object-oriented or modularized programs.

The execution sequence of the GAMESS main subroutine is shown in the left column

of Figure 3. First, the GAMESS version information is printed and the Distributed Data

Interface (DDI) [11] is initialized. Based on the user configuration during the compilation

step, DDI choose to use TCP/IP sockets, MPI, or other communication libraries for

communication.

Next, the calculation type, molecule coordinates, basis sets and other user input

options are read from an external input file and the corresponding common blocks are

initialized based on those inputs. Depending on the type of computation, the execution

follows different branches, such as energy, gradient, Hessian, optimize, or saddle point.

These computation branches are not independent from each other; one computation branch

may overlap another branch. For example, a gradient computation needs to compute the

energy first, so the route for the gradient branch will first go through the energy branch and

then calculate the gradient. At the end of a computation, the control returns to the main

subroutine for finalizing computations, cleaning up memory and finalizing the

communication layer.

www.manaraa.com

 22

Main: initialize variables and
the communication layer.

Main: finalize memory and the
communication layer.

Choose a branch from the list:
energy, gradient, Hessian,
optimization, etc.

gamess_start

gamess_read_input

gamess_end

gamess_get_energy

gamess_get_gradient

gamess_get_hessian

Read in basis sets, molecule
coordinates and other user
options.

… …

Figure 3. The execution sequence of the GAMESS main subroutine has four parts,
shown on the left-side. Several wrapper functions (the right-side) are created by dividing
the sequential main subroutine into smaller functions.

2.2.2 DDI
In the DDI communication model, two processes are normally assigned to a CPU,

with one process performing the computational tasks, while the other exists solely to store

and serve requests for the data associated with the distributed array [11]. There are some

cases, in which a data server is not required, such as when using DDI over one-sided message

libraries 1 . Also, with the latest version of DDI, the data server is not required when

MPI/MPI2 or ARMCI is used as a communication mean2. In Section 2.2.2, I only consider

the cases when the data server is needed, since the design of compute process/data server

is a special feature in DDI and is hard to understand.

On a SMP machine or cluster (Figure 4), all the DDI processes (both compute and

data server processes) within a node have direct access to all distributed array segments in

the shared memory of that node. Thus, each compute process and data server can use system

shared memory operations, such as copy or paste, locally to access the portion of a

distributed array in its local shared memory without using any parallel communication

1 DDI relies on LAPI or SHMEM libraries rather than TCP/IP on some high-end parallel systems
2 For this version of DDI, only the ARMCI model has been used in the official distribution of the GAMESS program

www.manaraa.com

 23

mechanisms. Depending on the platform, communications between compute processes and

data servers among different nodes occur either via TCP/IP sockets connections or MPI/MPI-

2 [12]. When DDI uses TCP/IP sockets for communication, the DDI kickoff program is used

for starting the required number of processes on every requested machine in the cluster that

will run the job. If MPI/MPI-2 is used as the communication mechanism, then mpirun (or

mpiexec) is used to start GAMESS processes.

Figure 4. When DDI is used on an SMP cluster, all DDI processes within a node can
access the distributed array in the node. The communications between data servers
among different nodes depend on the communication mechanism configured with DDI
(i.e., TCP/IP sockets, or MPI/MPI-2) [11].

Figure 5 shows the sequence of how the DDI kickoff program starts GAMESS or

other programs. First, the DDI kickoff program needs the program name and the host list as

command-line arguments; the host list is a list of host machine names and the number of

CPUs in each node. The master DDI kickoff process analyzes the host list to catch the

information on how many compute processes and data servers reside on each host machine.

Second, a copy of the DDI kickoff program, along with information about host machines is

spawned on each remote host in binomial order. As soon as a copy of the DDI kickoff

program is launched on a host node, it creates the requested number of compute and data

server processes on that host machine. Finally, a copy of the GAMESS program, with the

host machine list, socket ports, host machine and process identities as the command-line

www.manaraa.com

 24

arguments, starts on each computer and data server process. The TCP/IP socket connections

between a DDI kickoff process and a compute or data server process on the same host

machine is created after the program starts the DDI initialization procedures. The DDI

kickoff process on each host machine will wait for each compute and data server process to

check in by listening to TCP/IP socket connections. As soon as all compute and data server

processes are checked in, the communication is established for all compute and data server

processes.

Figure 5. The numbers along with the arrows show the sequence of how the DDI kickoff
program starts the remote DDI kickoff processes. First, the DDI kickoff program starts
the master DDI kickoff process (the white one) in Node 0. Then, it starts a copy of remote
DDI kickoff process (the blue one) in Node 1. Both DDI kickoff processes in Node 0 and
Node 1 will send commands to start the remote DDI kickoff processes (the yellow ones)
on Node 2 and Node 3. Next, all the DDI kickoff processes will start the remote DDI
kickoff processes in other Nodes if needed. The same procedure will continue until all the
required nodes have a copy of DDI kickoff program running. Finally, each copy of the
DDI kickoff program will create one compute process and one data server process on
each CPU and GAMESS (or other programs) will be running in each compute/data server
process.

www.manaraa.com

 25

CHAPTER 3. COMPONENTS IMPLEMENTATION FOR GAMESS
In general, the first step of componentizing a package is to create the SIDL interfaces.

In our case, we need to extend the pre-defined chemistry interfaces in the cca-chem-generic

package [28]. Next, the implementation files of the specified programming languages (C,

C++, f77, f90, python, or java) are generated based on those interfaces by using Babel, the

language interoperability tool. The auto-generated implementation files initially contain no

customized codes; they include only some splicing banners and some auto-generated codes

and comments. Programmers need to insert codes between splicing banners in each

implementation file with the specified programming language; in our case C++. During each

compilation, those implementation files will be regenerated according to the SIDL

definitions, but the customized codes that are inserted between splicing banners will not be

modified.

In addition, to componentize a large-scale FORTAN 77 based code such as

GAMESS, wrapper functions are necessary as a bridge between CCA interfaces and the

native GAMESS code. Since there is no object-oriented design in the GAMESS code, it is

difficult for the implementation of GAMESS CCA components to utilize GAMESS

subroutines directly. The use of wrapper functions divides GAMESS subroutines into smaller

and less interleaving functions and therefore makes the componentization possible.

However, simply implementing the chemistry interfaces is not enough for GAMESS

to run under the CCA framework, since GAMESS relies on DDI to start the computation,

either sequential or parallel. We first need to construct communication models that allow

DDI to run under the CCA framework. When DDI relies on TCP/IP as communication

methods, the DDI kickoff program is used to kick off the corresponding program, GAMESS

in our cases. Thus, we constructed our first communication model for the GAMESS CCA

components: the “GAMESS/DDI” model, where the DDI kickoff program will start the CCA

framework in each process. The GAMESS/DDI model was useful when we started

implementing the CCA interfaces for GAMESS, since it was the easiest and the most

straightforward way to make the GAMESS CCA components work under the CCA

framework. The limitation of the GAMESS/DDI model is that only the programs that use

www.manaraa.com

 26

DDI as the communication interfaces are able to run in parallel. The second communication

model, therefore, is created, in which DDI depends on MPI/MPI-2 as the underlying

communication layer. We call the second model the “GAMESS/DDI/MPI” model. In this

model, the MPI startup program is used to kickoff the required processes and any programs

that use MPI are able to run in parallel.

In this section, I will introduce several commonly used CCA chemistry interfaces that

defined in the cca-chem-generic package; followed by the detailed description and analysis

of the two communication models for GAMESS CCA components; finally, the

implementation procedure of several GAMESS CCA components will be demonstrated in

details.

3.1 CCA Chemistry Interfaces
Most quantum chemistry programs perform fundamental chemistry calculations.

Although existing chemistry packages may have a lot of overlapping functionalities, some of

them may be more efficient in certain calculations while others may provide special

functionality. The CCA provides an environment for different quantum chemistry programs

to communicate with each other, and opens the possibility to utilize the best of each package.

The CCA Chemistry group [28] already integrates several quantum chemistry programs,

optimization solver packages, and parallel data management packages to perform geometry

optimizations.

A set of chemistry interfaces are defined in the cca-chem-generic package [28] that

each chemistry package can implement to create chemistry components and classes. In the

design of those chemistry interfaces, the interface for a “component” usually ends with

“FactoryInterface” and the corresponding component usually acts as a driver to return

references to some classes, while a “class” usually provides real computations. The

implementation of a component is only different from the implementation of a class in that a

component also needs to implement the gov.cca.Component and gov.cca.Port interfaces.

ModelInterface & ModelFactoryInterface. The ModelInterface declares the

primary functions in quantum chemistry computations, such as the evaluation of molecule

energies, gradient and Cartesian Hessians. The ModelFactoryInterface declares methods to

www.manaraa.com

 27

provide model options and initializes the model class. Basically, a ModelFactory component

(implements ModelFactoryInterface) will be initialized with the user input options, such as

the type of theory, the basis sets, etc. The get_model mothod could then be invoked to get a

model class (implements ModelInterface). The get_energy, get_gradient, and get_hessian

methods are three primary methods for a model class to perform those chemistry calculations.

MoleculeInterface & MoleculeFactoryInterface. The MoleculeInterface declares

functions for gathering information of a molecule, such as Cartesian coordinates and atomic

number. The MoleculeFactoryInterface declares functions to instantiate molecule classes

[28]. The cca-chem-generic package provides the implementation for the

Chemistry.MoleculeFactory component (implements MoleculeFactoryInterface) and the

Chemistry.Molecule class (implements MoleculeInterface) for all packages to use.

Integral evaluation interfaces. There are four core interfaces for integral

computations: IntegralEvaluator1Interface for 1-center integrals,

IntegralEvaluator2Interface for 2-center integrals, IntegralEvaluator3Interface for 3-center

integrals and IntegralEvaluator4Interface for 4-center integrals. We call any classes that

implement the above interfaces integral evaluators. Another core interface is

IntegralEvaluatorFactoryInterface, which serves as a driver that returns references to the

integral evaluators. An integral evaluator factory that implements

IntegralEvaluatorFactoryInterface usually also extends the gov.cca.Component and

gov.cca.Port interfaces and is used to provide integral evaluators for each chemistry package.

Figure 6 shows the relationship among those five core integral interfaces and the three

chemistry packages.

www.manaraa.com

 28

NWChem GAMESS MPQC

integral
evaluator1

IntegralEvaluatorFactoryInterface

integral evaluator factory

integral
evaluator2

integral
evaluator3

integral
evaluator4

component

CCA interface

class

Chemistry Package

Integral
Evaluator1
Interface

Integral
Evaluator2
Interface

Integral
Evaluator3
Interface

Integral
Evaluator4
Interface

Figure 6. Each chemistry package can implement the IntegralEvaluatorFactoryInterface
to provide an integral evaluator factory component and implement one or more of
IntegralEvaluatorNInterface (N=1, 2, 3 and 4) to provide the integral evaluatorN classes.
The integral evaluator factory component is a driver component to return the references to
integral evaluators for integral computations.

An integral evaluator interface provides a compute method for calculating integrals

for a shell multiplet. For example, the compute method of IntegralEvaluator2Interface is for

computing a shell doublet, which is illustrated below,

/** Compute a shell doublet of integrals.
@param shellnum1 Gaussian shell number 1.
@param shellnum2 Gaussian shell number 2. */
void compute(in long shellnum1, in long shellnum2);

Where two indexes of Gaussian shells are passed as parameters and the resulting integrals are

stored in a buffer that is initialized by the integral evaluator. Similarly, the compute method

of IntegralEvaluator4Interface needs four indexes of Gaussian shells as parameters to

compute integrals for a shell quartet.

Several auxiliary interfaces. Several auxiliary interfaces are also important to the

initialization of integral evaluators: CompositeIntegralDescrInterface, MolecularInterface,

AtomicInterface and ShellInterface. The IntegralDescrInterface is used to configure integral

evaluators, which stores the information such as the type of integrals and derivative centers.

The MolecularInterface provides a molecule (implements MoleculeInterface) object and the

atomic basis data for a molecular Gaussian basis set, which includes the atomic basis set for

any atom number of the molecule. The AtomicInterface provides the shell data for an atomic

Gaussian basis set (AO), which provides a Gaussian shell for any given shell number. The

ShellInterface provides the primitive and contraction data for a Gaussian shell [24]. Through

www.manaraa.com

 29

these interfaces, the information required for computing integrals can be passed from one

package to another package without initializing every package. Figure 7 shows an example of

how molecule coordinates and the basis set are stored in CCA integral objects.

Molecular

Atomic0: O

Atomic1: H

Atomic2: H

Shell0: S (primitive 1, 2, 3)

Shell1: L (primitive 4, 5, 6)

Shell0: S (primitive 7, 8, 9)

Shell0: S (primitive 10, 11, 12)

Molecule (x, y, z coordinates)

SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENT(S)
O

1 S 1 130.7093214 0.154328967295
1 S 2 23.8088661 0.535328142282
1 S 3 6.4436083 0.444634542185
2 L 4 5.0331513 -0.099967229187 0.155916274999
2 L 5 1.1695961 0.399512826089 0.607683718598
2 L 6 0.3803890 0.700115468880 0.391957393099

H
3 S 7 3.4252509 0.154328967295
3 S 8 0.6239137 0.535328142282
3 S 9 0.1688554 0.444634542185

H
4 S 10 3.4252509 0.154328967295
4 S 11 0.6239137 0.535328142282
4 S 12 0.1688554 0.444634542185

ATOM ATOMIC COORDINATES (BOHR)
CHARGE X Y Z

O 8.0 0.0000000000 0.0000000000 0.1239321808
H 1.0 1.4305200000 0.0000000000 -0.9834468192
H 1.0 -1.4305200000 0.0000000000 -0.9834468192

Figure 7. When using the water molecule and the “STO-3G” basis set as inputs, the
information of molecule coordinates and the molecular basis sets in the GAMESS program
is shown in the upper table. The upper block of the table shows the X, Y, Z coordinates of
the water molecule. The bottom block of the table contains several columns. The
information shown in the order from left to right is: the atomic symbols, the index of
Gaussian shells, the Gaussian shell types, the primitive Gaussian shells, the exponents and
contraction coefficients. Following each atom symbol is a block of Gaussian shells
associated with it. The corresponding CCA integral components that store the same
information are shown in the lower graph. The molecule coordinates are stored in a
Molecule object (implements MoleculeInterface). The basis set information is stored in
three Atomic (implements AtomicInterface) objects with the references to the corresponding
Shell (implements ShellInterface) objects. A Molecular (implements MolecularInterface)
object contains the references to the Molecule object and three Atomic objects.

www.manaraa.com

 30

An example of applications. Figure 8 shows an application example of the chemistry

components under the CCA framework. The MoleculeFactory component, ModelFactory

component and a driver component are instantiated under a single CCA framework. The

MoleculeFactory component can get the reference of the Molecule class through the Provides

port of the MoleculeFactory component and invoke the methods of the Molecule class.

Similarly, the driver component can get the reference of the Model class that instantiated and

initialized by the MoleculeFactory component, and then invokes the methods of the Model

class, such as get_energy, get_gradient, and get_hessian. The driver component will also

output calculation results returned from the Model class.

Figure 8. Port A is a Provides port that is implemented by the MoleculeFactory
component, through which the reference of the Molecule class is passed to other
components. Port C is a Provides port that implemented by the ModelFactory component,
through which the reference of the Model class is passed. Port B and port D are Uses ports
that are registered by the ModelFactory component and the driver component for using
the services provided by other components.

3.2 Mechanisms of Creating GAMESS CCA Components
GAMESS requires DDI as the communication library when running in both

sequential and parallel. DDI mainly relies on TCP/IP sockets for communication, and can

also use MPI/MPI-2 as its underlying communication mechanisms. When a GAMESS CCA

www.manaraa.com

 31

component is instantiated under a CCA framework, it requires DDI being initialized to be

able to use GAMESS functions. It is thus important to integrate DDI with the CCA

framework to enable GAMESS CCA components running in both sequential and parallel.

Since TCP/IP is the most commonly used mechanism used DDI for GAMESS that

installed on most of architectures, we start integrating DDI and the CCA framework by using

the TCP/IP sockets as the underlying communication methods - the GAMESS/DDI model.

The GAMESS/DDI model works fine for the components that use DDI as the

communication library. However, for the components that do not use DDI, the

GAMESS/DDI model restricts them for running in parallel. For example, since the DDI

kickoff program is required for starting DDI processes in the GAMESS/DDI model, the MPI

startup program cannot be used for starting processes and components that rely on MPI/MPI-

2 for communications are not allowed to run in parallel.

The GAMESS/DDI/MPI model is designed for integrating DDI with the CCA

framework when MPI/MPI-2 is used as the underlying communication library. However,

when the data server is required, the GAMESS/DDI/MPI model raises problems for some

components that depend on all MPI processes for computations. Since half of processes will

be assigned as data servers, purely serving the calls for communication requests, there are

only half of processes performing computation tasks. When a component needs to perform a

global computation, such as a global sum calculation, they will wait for the results from the

half of processes (data servers) that will never perform the global calculation, and a deadlock

occurs.

This problem can be avoided if no data server is required, all of the allocated

processes being used for computations. There is a version of DDI (newly developed) does

not require the data server when relies on MPI/MPI-2 or ARMCI. We will introduce

GAMESS/DDI/MPI model in both cases: the cases when the data server is required and

when it is not required.

3.2.1 The GAMESS/DDI mechanism

When more than one CPU is required, the DDI kickoff program starts a compute

process/data server pair for each CPU. An instance of the CCA framework is started on each

compute process. The data servers are put to sleep and purely wait for the communication

www.manaraa.com

 32

requests from compute processes. Each instance of the CCA framework will initialize

components and the connections among components based on user inputs. All the

components and connections contained in a framework are identical on each compute

process. The GAMESS CCA components contained in the framework of each compute

process will initialize the DDI communication layer, in which only the components or the

underlying programs that use DDI as the communication mechanism are able to run in

parallel. The CCA framework or other components under the same framework cannot run in

parallel, since the communication mechanisms used by the CCA framework or other

components, such as MPI/MPI-2, will not be initialized.

Figure 9 shows a simple example of the GAMESS/DDI model under the CCA

framework. On a SMP cluster with 4 nodes, the DDI kickoff process (section 2.2.2) on each

node starts one compute process/data server pair for each CPU of that node, and then each

compute process starts an instance of the CCA framework. The CCA framework, the

component instances and their connections that are contained in the CCA framework are

identical for all compute processes. When the DDI initialization procedure succeeds and the

communication layer of DDI is established, the GAMESS CCA components within the same

node can directly access the distributed arrays that are stored in the local shared memory of

that node, and the GAMESS CCA components among different nodes can communicate with

each other by using TCP/IP. The underlying communication operations are performed by the

data server that associated with each compute process.

www.manaraa.com

 33

Node 1 Node 0

The major difficulty we encountered in designing this model is passing command-line

arguments, which contain the information for initializing the DDI program (Section 2.2.2),

from the DDI kickoff program to the GAMESS CCA components. When the DDI kickoff

program starts the CCA framework, the command-line arguments are passed to the CCA

framework, and there is no way to pass the arguments directly to a component under the

CCA framework. Without the command-line arguments, DDI initialization cannot connect

with the corresponding DDI kickoff program in that host machine, and the communication

layers cannot be established correctly. Therefore, the “Stovepipe” Library provided by the

CCA framework is used to convey the argument list from the CCA framework to the

GAMESS CCA components.

Even though the GAMESS/DDI model works fine for GAMESS CCA components, it

prohibits the components from other packages that do not use DDI from running in parallel.

The GAMESS/DDI/MPI model is necessary for GAMESS to interact with other packages

through the CCA framework.

Compute
Process

 Process 1

 A B C
Compute
Process

 Process 0

 A B C

 CPU 0 CPU 1

 Shared
Memory

Compute
Process

Compute
Process

 Process 3

 A B C
Compute
Process

 Process 2

 A B C

 Shared
Memory Data

 CPU 2 CPU 3

Server Process 5 Process 6 Process 7 Process 4

TCP / IP

Figure 9. Under this model, one compute process/data server pair is created for each
CPU. The CCA framework (green part) is initialized on each compute process. The data
servers are put to sleep and purely waiting for the requests for the communication from
compute processes. A is the driver component, which gets the Model object from B (the
GAMESS component) through Provides/Uses ports. C is the MoleculeFactory
component, which provides the molecule object to the GAMESS CCA component. The
yellow area is the portion of distributed arrays that stored in the local shared memory of a
node, where the compute processes and data server processes can directly access. The
communication of compute processes among different nodes is through the TCP/IP
sockets connections.

www.manaraa.com

 34

3.2.2 The GAMESS/DDI/MPI mechanism

With the data server

The current version of DDI (the version is used with GAMESS) requires the data

server when relies on the mix of MPI/TCP. In this model, the MPI startup program will

initialize the required processes, where half of allocated processes are specified as "compute

process" and half of processes are assigned as "data server". For example, when running the

CCA framework with 2n processes, the DDI initializing procedure will use only n processes

for computations and n processes for the communication. The processes within the same

node can direct access to the portion of distributed arrays in the local shared memory of that

node. This is different from the GAMESS/DDI model in two ways. First, both MPI and

TCP/IP are used for communication. MPI is used to pass the actual data, such as a part of

distributed arrays, when a process tries to access the portion of the distributed arrays that is

not in its local shared memory. The TCP/IP is used for some smaller messages, such as a

system call for waking up a sleeping process. The mixed message passing method is used,

since most MPI implementations require a process to continuously check for the incoming

calls. Thus, using pure MPI will make a data server compete for CPU resources with

compute processes. In the TCP/IP implementation, while waiting for a request, each data

server process is put to sleep, thus essentially yielding full CPU access to the compute

process [11]. Therefore, the mixed MPI/TCP model for DDI should out-perform using pure

MPI.

The GAMESS/DDI/MPI model for GAMESS CCA components is based on the

MPI/TCP model for DDI. This model allows GAMESS and other programs to run in parallel

through MPI/MPI-2 calls when running under the same CCA framework. However, with the

requirement of the data server by DDI, the other programs may have trouble to run correctly

in parallel since half of allocated processes have been put to sleep. For example, the MPQC

program knows that the number of processes in MPI_COMM_WORLD is 2n, while only n

of processes are performing computations. When MPQC doing a parallel calculation, such as

the global sum, it will by default use all 2n processes for the computation, but the number of

actual processes that running MPQC components is only n; the other n processes are assigned

as data servers and do no real computations. This will cause the deadlock in MPQC for

www.manaraa.com

 35

waiting for the results from n data servers that will never perform the task.

Without the data server

A newer version of DDI has eliminated the requirement of the data server when using

MPI/MPI-2 or ARMCI as the underlying communication library. When this version of DDI

relies on MPI/MPI-2, it purely uses MPI/MPI-2 calls for communication, not depending on

TCP/IP. When using the older version of DDI with MPI/MPI-2, half of the allocated

processes are assigned as data servers. If GAMESS works with other programs that use

MPI/MPI-2, the programs other than GAMESS may enter the deadlock when they expect

"data servers" should do the same computations as "compute processes" do, since data

servers are used purely for communication, no computations are allowed. By eliminating the

Node 0

Compute
Process

 Process 1

 A B C
Compute
Process

 Process 0

 A B C

 CPU 0 CPU 1

 Shared
Memory

Compute
Process

Node 1

Compute
Process

 Process 3

 A B C
Compute
Process

 Process 2

 A B C

 CPU 2 CPU 3

 Shared
Memory

Data
Server Process 4 Process 5 Process 6 Process 7

TCP/IP & MPI/MPI-2

Figure 10. Under the GAMESS/DDI/MPI model, half of the processes is assigned as
compute process and half of the processes is specified as data server. The CCA framework
(green part) is initialized on each compute process. The data servers are put to sleep and
purely waiting for the requests for the communication from compute processes. A is the
driver component, which gets the Model object from B (the GAMESS component)
through Provides/Uses ports. C is the MoleculeFactory component, which provides the
molecule object to the GAMESS CCA component. The yellow area is the portion of
distributed arrays that stored in the local shared memory of a node, where the compute
processes and data server processes can directly access. The communication of compute
processes among different nodes is through TCP/IP sockets or MPI/MPI-2. Components
A and C are able to communicate among compute processes through MPI/MPI-2.

MPI/MPI-2

MPI/MPI-2

www.manaraa.com

 36

data server when relying on MPI/MPI-2, DDI is able to work with other programs without

the restriction caused by the data server. It thus allows GAMESS to cooperate with other

programs by using MPI/MPI-2 through CCA components.

The upgraded GAMESS/DDI/MPI model for the GAMESS CCA components is

based on the newer version of DDI when it depends on MPI/MPI-2. This model uses the MPI

startup program to initialize the required processes. The sequences for initializing the CCA

framework and GAMESS computations are similar with the GAMESS/DDI/MPI model with

the data server, except that all of the processes are performing computations (no data server).

The CCA framework and components that use MPI/MPI-2 as the communication method

will be able to run in parallel by using this model without any restrictions from

GAMESS/DDI.

3.3 GAMESS CCA Components
GAMESS has implemented several chemistry components, including

GAMESS.GaussianBasisMolecular, GAMESS.GaussianBasisAtomic,

GAMESS.GaussianBasisShell, GAMESS.ModelFactory, GAMESS.Model,

GAMESS.IntegralEvaluatorFactory, GAMESS.IntegralEvaluator2, and

GAMESS.IntegralEvaluator4. To be able to use GAMESS functions, the wrapper functions

are required as bridges between GAMESS and the CCA interfaces. There are four groups of

wrapper functions have been created according to their functionalities: (1) initializing the

GAMESS program and DDI; (2) initializing the basis set information; (3) calculating energy,

gradient and Hessian; (4) calculating 1e- and 2e-integrals. The implementation of those

wrapper functions is different from cases to cases, depending on the implementation of the

corresponding GAMESS subroutines and the SIDL interfaces for GAMESS CCA

components.

The implementation of GAMESS CCA components is straightforward for most of

methods, just invoking the corresponding wrapper functions. The wrapper functions can be

considered as a part of the implementation for GAMESS CCA components. The

implementation files in the server-side for GAMESS CCA components are initially empty,

being auto-generated by BABEL based on SIDL interfaces. To insert codes into those

www.manaraa.com

 37

implementation files, the corresponding wrapper functions are invoked for performing

specific calculations in GAMESS. For example, to implement get_energy method of

GAMESS.Model class, the gamess_get_energy wrapper function is called inside the

get_energy mothod. Thus, the wrapper functions can be considered as the part of

implementation for GAMESS CCA components, or as the extra layer of function calls

between the component implementation files and the original GAMESS subroutines.

In this section, we will present the procedure of constructing wrapper functions, the

implementation of the GAMESS CCA components, and finally the structure of GAMESS

CCA components.

3.3.1 The design of GAMESS wrapper functions
The layer of wrapper functions is between the CCA interfaces (the implementations

for GAMESS CCA components) and the original GAMESS codes. The wrapper functions

are created based on CCA SIDL interfaces and the underlying structure of GAMESS

subroutines. When a method defined in a SIDL interface that require the specific information

from the GAMESS program, such as the exponent for a primitive Gaussian, a corresponding

wrapper function is created for reading the exponent from the associated common block in

the GAMESS program. The method in CCA side (the implementation files) will invoke this

wrapper function, instead of directly reading the common block from the GAMESS program.

There are several reasons that we require wrapper functions.

First, the GAMESS program adopts a top-down programming model and there is no

object-oriented or modularized design concepts built in. A computation (a branch) is usually

started from a driver subroutine and continued with several sub-branches based on the user

input option or the default settings. The codes for those sub-branches usually interleave with

each other or depend on the results computed by branches. When a CCA method needs to

access a sub-problem, instead of the whole computation, there are no subroutines that we can

use directly to calculate the sub-problem without touching common blocks or codes in other

subroutines. These tightly interleaving codes for GAMESS computations make the

componentizing procedure a hard task. If we reorganize the part of codes for solving a sub-

problem and group them into wrapper functions with the modularized design, it is possible

www.manaraa.com

 38

for us to invoke these wrapper functions from the CCA method. Otherwise, there is no way

that we can componentize a computation in GAMESS. Moreover, we can test the wrapper

functions for a GAMESS computation without touching the CCA implementations, and we

only need to test if the invoke/return processes are correct.

Second, the wrapper functions can be accessed easily through the function headers for

multiple times without touching the real codes. When a newer version of GAMESS is

distributed, the corresponding codes in wrapper functions are also required to be upgraded.

We need to manually modify/test wrapper functions or create an automatic tool to perform

this task. The whole concept of CCA is for the reusability and interoperability between

software systems. It would be easier to manage the code if we use a GAMESS computation

through the wrapper functions, instead of inserting GAMESS codes directly into the CCA

implementation files.

Finally, the current GAMESS CCA components are implemented in C++, and the

GAMESS code is written in FORTRAN 77. The wrapper functions are necessary as the

middle layer of the function calls in between the C++ component implementation and the

FORTRAN 77 GAMESS program. The following details several strategies we used for

constructing wrapper functions.

Initializing GAMESS and DDI

In Section 2.2.1, the sequence of GAMESS main subroutine is divided into four parts:

(1) initializing variables and the communication layer; (2) read in user options; (3) choose a

computation branch according to the type of the computation; (4) finalizing memory and

communication layer. The right column of Figure 3 shows how we divide and wrap the

original sequential main subroutine into several smaller wrapper functions. The wrapper

function gamess_start is for initializing GAMESS computation and the communication layer

(DDI will be initialized); gamess_end is for finalizing memory and DDI. The construction of

these two wrapper function is simple: basically just wrapping the codes that corresponding to

each part and group them into two subroutines. However, parts of the DDI code have to be

modified depending on which model is used: the GAMESS/DDI model or the

GAMESS/DDI/MPI model.

www.manaraa.com

 39

When using GAMESS/DDI/MPI model, the MPI initialization method MPI_Init will

be invoked during the initialization of DDI. However, the CCA framework will also call

MPI_Init at the beginning. Since MPI_Init cannot be called more than once, we have to

modify DDI to ignore the call to the MPI_Init method. A flag is added before the call to

MPI_Init, so that MPI_Init will not be executed if it has already been invoked.
 int flag;
 MPI_Initialized(&flag);
 if (!flag) {
 if(MPI_Init(&argc,&argv) != MPI_SUCCESS) {
 fprintf(stdout," DDI: MPI_Init failed.\n");
 fflush(stdout); exit(911);
 }

When using the GAMESS/DDI model, the DDI initialization requires a list of

command-line arguments, such as process id, port number, hostname, etc, in the DDI-known

format, that are passed from the DDI kickoff program. When the GAMESS program works

alone (without using the CCA framework), the list of command-line arguments will be

passed from the DDI kickoff program to the GAMESS main subroutine, and then passed to

the DDI initialization method DDI_Init. However, when the GAMESS program works with

the CCA framework, the command-line arguments will be passed from the DDI kickoff

program to the CCA framework. There is no way that the command-line arguments will be

directly passed from the CCA framework to DDI_Init.

By using the StovePipe library in the CCA framework, the command-line arguments

can be read by GAMESS CCA components and then passed to DDI_init. Since the StovePipe

library requires a special format for storing the command-line arguments, such as “--

argument_name1 --argument_value1 … --argument_nameN --argument_valueN”, the format

of the command-line arguments that created in the DDI kickoff program have to comply with

the format that the StovePipe library requires. The format for the arguments will be

converted back to the format that DDI knows later by a GAMESS CCA component and be

passed to the method DDI_Init from the GAMESS CCA component.

Energy, gradient and Hessian calculations. For the third part of the GAMESS

main subroutine (the third rectangle from above to the bottom at the left-hand column in

Figure 3), several wrapper functions are created: gamess_get_energy, gamess_get_gradient

and gamess_get_hessian. This list can be expanded by creating a wrapper function for each

www.manaraa.com

 40

computation type. Those wrapper functions are constructed by setting the “run type” to the

corresponding type of computation, such as energy, gradient, Hessian, and optimization. The

final results of the computations will be read from the associate common blocks or the direct

access files (where GAMESS stores those results).

Initializing the basis set information. GAMESS stores the basis set information,

such as primitives, contraction coefficients, and exponents, in the common blocks NSHEL

and INFOA (Appendix B has detailed description about the common block NSHEL). A

wrapper function has been created for each element in the items of the common blocks.
 COMMON /NSHEL / EX(MXGTOT),CS(MXGTOT),CP(MXGTOT),CD(MXGTOT),
 * CF(MXGTOT),CG(MXGTOT),CH(MXGTOT),CI(MXGTOT),

(MXSH), * KSTART(MXSH),KATOM(MXSH),KTYPE(MXSH),KNG
 * KLOC(MXSH),KMIN(MXSH),KMAX(MXSH),NSHELL

 COMMON /INFOA / NAT,ICH,MUL,NUM,NQMT,NE,NA,NB,
 * ZAN(MXATM),C(3,MXATM),IAN(MXATM)
For example, the gamess_ex wrapper function will return the exponent with the

specified primitive.
/** Get the exponent with the specified index of primitives */
void gamess_ex_(int64_t* index, double* answer);

The integral computations

GAMESS computes two kinds of AO integrals, one- and two-electron integrals. For

Table 1. The subroutines for computing integrals

Computation Subroutine Description

ONEEI the driver subroutine for the one-electron
integral calculation GAMESS

HSANDT calculate integrals over all shell doublets

gamess_1e_initialize initialize the one-electron integral
calculation

gamess_dblet_integral compute integrals for a shell doublet

one-electron
integral
computation GAMESS

Wrapper
Functions

gamess_1e_finalize finalize the one-electron integral
calculation

JANDK the driver subroutine for two-electron
calculation GAMESS

TWOEI calculate integrals over all shell quartets

gamess_twoei_initialize initialize the two-electron integral
calculation

gamess_twoei_compute compute integrals for a shell quartet

two-electron
integral
computation GAMESS

Wrapper
Functions

gamess_twoei_finalize finalize the two-integral calculation

www.manaraa.com

 41

two-electron integrals, GAMESS provides four computational methods, each of which has its

strength for computing different sets of shell types. By default GAMESS chooses the most

efficient one by picking the best method for each shell quartet. Users can choose a specific

integral code through the input options. For ease of presentation, we omit details of data

structures and functions used in integral computations, but list only the driver subroutines for

one- and two-electron integral calculations in the GAMESS code and the corresponding

wrapper functions in Table 1.

The subroutine ONEEI (Table 1) for the one-electron integral computation in

GAMESS is for initializing one-electron integral calculation and calling the subroutine

HSANDT to compute one-electron integrals over all pairs of Gaussian shells. A two-level

nested loop structure is used in the subroutine HSANDT to loop over all i and j shells, where

i and j are indexes of Gaussian shells. However, the cca-chem-generic package defines the

compute method of IntegralEvaluator2Interface to return integrals for only one pair of shells;

to comply with the interface we cannot just wrap the integral subroutines in GAMESS. In

order to create a wrapper function that computes only one shell doublet while making

minimum modification to the original GAMESS subroutine, the initialization, finalization,

and computation steps are separated into three wrapper functions. Figure 11 shows how we

extract the initialization procedure from ONEEI and HSANDT to form a single function for

initializing one-election integral calculations. The computation code in HSANDT is wrapped

into a function that calculates integrals for one pair of shells with variables (i,j) in the loops

as parameters. The wrapper functions are invoked by the GAMESS.IntegralEvaluator2

(implements IntegralEvaluator2Interface) class.

www.manaraa.com

 42

ONEEI: Initialization … Calculate H, S and T integrals … Other calculations

HSANDT: Initialization … Loop over (i,j) primitives … Finalization

Call for H, S and T
integral calculation

gamess_1e_initialize gamess_dblet_integral

Set i, j as parameters,
only computing integrals
for one shell doublet

gamess_1e_finalize

Figure 11. The componentization of one-electron integral calculations in GAMESS.

The subroutine JANDK (Table 1) is the main driver for computing two-electron

integrals. It first allocates memory for integral buffers and initializes integral calculations.

TWOEI is then called for calculating two-electron integrals over four basis functions.

However, the cca-chem-generic package defines the compute method of

IntegralEvaluator4Interface to return integrals for only one shell quartet. Similarly, we need

to create a wrapper function that computes integrals for only one shell quartet.

JANDK: Initialization … Calculating two-electron integrals … Other calculations

TWOEI: Initialization … Loop over (ii, jj, kk, ll) primitives … Finalization

Call for two-electron
integral calculation

gamess_twoei_initialize gamess_twoei_compute

Set ii, jj, kk, ll as parameters,
only compute integrals for
one shell quartet

gamess_twoei_finalize

Figure 12. The componentization of one-electron integral calculations in GAMESS

Combining the initialization steps in JANDK and TWOEI (Figure 12), a wrapper

function is used for initializing two-electron integrals. With the same strategy as

componentizing one-electron integral computations, the part that loops over four basis

www.manaraa.com

 43

functions is wrapped as a function to compute one shell quartet with (ii,jj,kk,ll) as parameters.

Finally, a wrapper function is created for finalization of two-electron integral calculations.

The reason we separate initialization steps from the computation steps is to reduce the

overhead of the wrapper functions. The wrapper functions are designed to compute integrals

for a shell doublet or a shell quartet, so they can be called ()2NO times for one-electron

integral calculation and ()4NO times for two-electron integral calculation. Without separating

the initialization step from computation steps, there would be a significant amount of

overhead for computing integrals.

3.3.2 The design of GAMESS CCA components
The implementation of GAMESS CCA components is straightforward as long as the

associated wrapper functions have been constructed. The GAMESS.ModelFactory component

implements ModelFactoryInterface, and is able to return the GAMESS.Model class. The

get_energy, get_gradient and get_hessian methods of the GAMESS.Model class will invoke

the wrapper functions gamess_get_energy, gamess_get_gradient and gamess_get_hessian.

Through the ModelFactoryInterface Uses/Provides port, the energy, gradient, and Hessian

calculations provided by GAMESS can be used through the CCA interfaces. Similarly, the

GAMESS.IntegralEvaluatorFactory component implements

IntegralEvaluatorFactoryInterface, and is able to return the GAMESS.IntegralEvaluator2

and GAMESS.IntegralEvaluator4 classes for GAMESS integral computations (Figure 6). The

compute method of the GAMESS.IntegralEvaluator2 class invokes the wrapper function

gamess_dblet_integral for computing a shell doublet and the GAMESS.IntegralEvaluator4

class calls the wrapper function gamess_twoei_compute for calculating a shell quartet.

Through the IntegralEvaluatorFactoryInterface Uses/Provides port, the functionality of the

integral calculation can be shared between GAMESS and other chemistry packages.

3.3.3 The structure of GAMESS CCA components
GAMESS stores basis set and molecule coordinates in common blocks, through

which the values required for integral computations - the indexes of Gaussian shells,

exponents, contraction coefficients, and Cartesian coordinates - are shared among different

www.manaraa.com

 44

subroutines, and integral calculations can be performed. The GAMESS program initializes

common blocks, memory, and communications by reading the user input options from an

input file. Most of the input options in GAMESS have default values, but the basis set and

molecule coordinates are required for all input files. The input file is read for many

subroutines during a computation; without this file there is no way GAMESS can be

initialized and perform computations. Even though the GAMESS components we developed

are based on the interface for a “theoretically independent” component, the underlying

wrapper function depends on the original design for initializing the GAMESS computations.

To deal with the common “input file” issue, our approach is to have the

GAMESS.ModelFactory component create a disk file with the format of the GAMESS input

file, based on the user options that are passed from the CCA parameters. This disk file will be

passed to the GAMESS wrapper function gamess_start to initialize GAMESS computations.

Figure 13 shows the dependencies among GAMESS CCA components, GAMESS wrapper

functions and the GAMESS program. GAMESS CCA components are built on top of

GAMESS wrapper functions, which wrap the functionalities of GAMESS into non-

interleaving functions. To construct an application of GAMESS CCA integral computations,

a GAMESS.ModelFactory component and a GAMESS.IntegralEvaluatorFactory component

(implements IntegralEvaluatorFactoryInterface) are instantiated in a CCA framework. This

framework is middleware implementing a CCA model [14]. The GAMESS.ModelFactory

component reads user input options from CCA parameters, creates a GAMESS input file on

disk based on those input options and calls the wrapper function gamess_start to read the

input file and initialize GAMESS common blocks and communications. The

GAMESS.ModelFactory component also provides a GAMESS.Model class (implements

ModelInterface) for calculating the energy, gradient and Hessian. After GAMESS

computations are initialized successfully, the GAMESS.IntegralEvaluatorFactory component

is able to provide the GAMESS.IntegralEvaluator2 class (implements

IntegralEvaluator2Interface) and the GAMESS.IntegralEvaluator4 class.

www.manaraa.com

 45

GAMESS Wrapper Functions

The GAMESS Program

GAMESS
ModelFactory

ModelFactory
Interface

IntegralEvaluatorFactoryInterface

User input options

Input file

CCAFFEINE Framework

Create an
input file

Read
input file

CCA
Interface

Component

ModelInterface

GAMESS
Model Class

GAMESS
IntegralEvaluatorFactory

IntegralEvaluator2
Interface

IntegralEvaluator4
Interface

GAMESS
IntegralEvaluator2

GAMESS
IntegralEvaluator4

Figure 13. GAMESS CCA components are built on top of GAMESS wrapper functions.
However, the initialization of GAMESS computations could not be componentized and
relies on an input file for initializing common blocks and communications.

www.manaraa.com

 46

CHAPTER 4. INTEGRATION
The purpose of this research is to solve the interoperability of the three chemistry

packages: GAMESS, NWChem and MPQC (more packages may be involved in the future),

to share the functionalities among those packages. Through the pre-defined CCA chemistry

interfaces, a package is able use the functionalities provided in other packages under the

CCA framework. This resource sharing enables a new computation being constructed quickly

by choosing components from one or several preferred packages.

However, the integration of components from the existing packages is not as easy as

integrating components that are created from scratch. The components from GAMESS and

NWChem are based on the large legacy codes that are mostly written in FORTRAN 77. The

functionalities, parallel mechanisms and underlying structures of those components are

restricted by the design of the existing legacy codes. Even for the components that perform

the same kinds of computations but from different packages, the way of using those

components may be different. For example, the two-electron integral computations in

GAMESS are implemented with a load balancing mechanism that allows the tasks (integrals)

distributed among processes evenly. Instead of using the load balance mechanism to

parallelize the integral computation itself, both NWChem and MPQC parallelize the routines

that call the integral computations. This makes the way of using CCA integral components

from GAMESS different from the components provided by the other two packages.

Theoretically, users should not worry about the underlying design of components.

However, especially for the components constructed from the large legacy code, this is hard

to achieve in practices. The well-designed interfaces and the set of fully tested components

may help us to create a user-friendly, flexible, and powerful component-based software

system for the quantum chemistry simulations.

As a starting point for integrating the three chemistry packages, we choose to

integrate the integral calculations. We use the GAMESS.ModelFactory component for

reading user input options; pass a GAMESS.GaussianBasisMolecular object to the

MPQC.IntegralEvaluatorFactory component; calculate integrals by using the integral

evaluators from MPQC. Since the CCA integral components for NWChem were still under

www.manaraa.com

 47

development at the time we constructed the integration steps, we will leave the integration

with NWChem as one of our future works.

To generalize the integration of the already componentized computations, such as

energy, gradient, Hessian, and integral, we designed an interface for the “client-side”

functions of GAMESS CCA components. The “client-side” in this research is a set of classes

and data structures that are designed and created by using the CCA chemistry

classes/components with specific language binding. The programmers can choose a language

binding from the list that allowed by BABEL, such as C/C++, FORTRAN 77/90, Java, and

Python. The corresponding language bindings for a component can be generated by using the

BABEL tools. For example, the GAMESS.ModelFactory component is implemented in C++.

If we need to create the “client-side” for GAMESS CCA components with FORTRAN 77,

the “f77” binding has to be generated before the methods in the GAMESS.ModelFactory

component can be accessed from the FORTRAN 77 “client-side” functions.

The section 4.1 will show the integration steps for integral calculations by GAMESS

and MPQC CCA components. The section 4.2 will introduce the design mechanism of the

GAMESS client-side and the possible issues for implementing the client-side interfaces.

4.1 The Integration of the Integral Calculation
We have already introduced the implementation details of GAMESS CCA integral

components and the structure of using GAMESS CCA components. To demonstrate the

procedure of integrating the integral calculation over the three chemistry packages, we need

to have an overall knowledge of the CCA integral components from both MPQC and

NWChem. Then, the procedure of integrating GAMESS and MPQC to perform the two-

electron integral computation will be presented.

MPQC CCA integral components

MPQC components are derived in a straightforward manner from the class libraries

underlying the MPQC package. For example, the IntegralEvaluator4 CCA object simply

wraps a class derived from sc::TwoBodyInt. On the client side, CCA integral factories are

wrapped by the sc::IntegralCCA class and CCA evaluators, such as IntegralEvaluator4, are

wrapped by the appropriate evaluator class, such as sc::TwoBodyIntCCA. Thus, MPQC has

www.manaraa.com

 48

no code that directly uses CCA integral interfaces, with all function calls to CCA objects

occurring through a wrapper object implementing an abstract interface. There are two

integral evaluator factories available within MPQC, IntV3EvaluatorFactory and

CintsEvaluatorFactory, providing access to the native IntV3 integral package and the Libint

package [15]. Details about the design of MPQC integral components are described in a

previous publication [16].

NWChem CCA integral components

As with the GAMESS code, the NWChem component software essentially consists of

wrappers to access the capabilities of the NWChem integral API. Currently, the

NWChem.ModelFactory needs to be created and initialized so that NWChem has the proper

information concerning the basis sets and the molecular configuration. It is anticipated that

this will change in the future. Once the Model Factory has created a Model, then NWChem

has also initiated its other functionalities such as memory management (global array

allocation), communication protocols and run-time database management. This is currently

essential for the integral components to function properly.

A significant portion of the CCA integral interface is similar to the NWChem API

and there is a fairly direct one-to-one mapping. However, the IntegralDescrInterface is

significantly different with no analog in NWChem, so the specifics of the types of

computations that the API is to perform are kept in the components and translated to the

appropriate API calls.

The integral termination is straightforward. However, the appropriate Model also

needs to be terminated to end all of the NWChem processes. Since NWChem CCA

components are currently being upgraded from working with the older version of Babel tools

and the CCA framework to working with the newest version of those packages, the

integration of GAMESS and NWChem will be part of our future work.

Interoperability between GAMESS and MPQC

To test interoperability between packages, we pass the basis set information, the type

of integrals, and molecule coordinates from a GAMESS.ModelFactory component to a

MPQC integral evaluator factory component by invoking a get_evaluator method. For

www.manaraa.com

 49

example, the SIDL definition for the get_evaluator4 method of

IntegralEvaluatorFactoryInterface is showed as follows:

/** Get a 4-center integral evaluator
 @param desc Integral set descriptor
 @return 4-center integral evaluator */
IntegralEvaluator4Interface get_evaluator4(
 in CompositeIntegralDescrInterface desc,
 in MolecularInterface bs1,
 in MolecularInterface bs2,
 in MolecularInterface bs3,
 in MolecularInterface bs4);

Using MPQC integral evaluators is expected to be as straight forward as using

GAMESS integral evaluators, as long as everything is initialized properly. For example, our

current testing is to pass a GAMESS.GaussianBasisMolecular object to the

MPQC.IntV3EvaluatorFactory component through the IntegralEvaluatorFactoryInterface

provides/uses connection. If the initialization in the GAMESS.GaussianBasisMolecular

object is correct, then the MPQC.IntV3EvaluatorFactory component should be able to return

an integral evaluator and do the same computation as a GAMESS integral evaluator.

The integration steps are as follows:

(1) Instantiate a GAMESS.ModelFactory component and a

MPQC.IntV3EvaluatorFactory component in a CCAFFEINE framework.

(2) GAMESS.ModelFactory component reads user options through CCA

parameters and initializes GAMESS common blocks, memory and parallel

layers.

(3) Create a GAMESS.GaussianBasisMolecular object and a

CompositeIntegralDescr (implemented by the cca-chem-generic package)

object.

(4) Pass the GAMESS.GaussianBasisMolecular and CompositeIntegralDescr

objects to the MPQC.IntV3EvaluatorFactory component and get the reference

to a MPQC.IntegralEvaluator2 object.

(5) Invoke the compute method of the MPQC.IntegralEvaluator2 object inside a

two-level loop structure that computes integrals over all pairs of shell basis

functions.

www.manaraa.com

 50

for (int64_t ii=0; ii<nshell; ii++) {
 for (int64_t jj=0; jj<=ii; jj++) {
 eval2_.compute(ii,jj);
 }
}

(6) Pass the GAMESS.GaussianBasisMolecular and CompositeIntegralDescr

objects to the MPQC.IntV3EvaluatorFactory component and get the reference

to a MPQC.IntegralEvaluator4 object.

(7) Invoke the compute method of the MPQC.IntegralEvaluator4 object inside a

four-level loop structure that computes integrals over all shell quartets.
for (int64_t ii=0; ii<nshell; ii++) {
 for (int64_t jj=0; jj<=ii; jj++) {
 for (int64_t kk=0; kk<=jj; kk++) {
 for (int64_t ll=0; ll<=(kk==ii?jj:kk); ll++) {
 eval4_.compute(ii,jj,kk,ll);
 }
 }
 }
}

(8) Finalize and remove all objects and components.

The goal of this experiment is to test interoperability only. The results of an integral

computation in each iterate are usually used by some other computation. With initial

interoperability established, our future work will turn to componentizing GAMESS code that

utilizes GAMESS/MPQC/NWChem integral components. The performance of GAMESS

integral components and issues in the interoperability of GAMESS with MPQC integral

components are discussed in Chapter 5.

4.2 The Design of the GAMESS Client-Side
We have showed the preliminary experiments on integral calculations by using CCA

components provided by GAMESS and MPQC. In this experiment, we instantiate a

Chemistry.MoleculeFactory component, a GAMESS.ModelFactory component, a

MPQC.IntegralEvaluatorFactory component, and a driver component in the CCA

framework and several auxiliary classes have also been created, such as

GAMESS.GaussianBasisMolecular, MPQC.IntegralEvaluator2, MPQC.IntegralEvaluator4,

and Chemistry.Molecule classes. The user input options are read by the

GAMESS.ModelFactory component; the basis set information and molecular geometry are

www.manaraa.com

 51

stored in a GAMESS.GaussianBasisMolecular object, which is passed to the

MPQC.IntegralEvaluatorFactory component; and the one- and two-electron integrals are

calculated by MPQC integral evaluators.

However, this experiment is just for calculating all shell doublets and shell quartets

for a molecule. A driver component is needed to manage the procedure of the computation.

Whenever a new computation is required, or a new package joins in, some modification has

to be done in the driver component or the SIDL interfaces, etc. For example, if we want to

use CCA integral components provided by NWChem, a different loop structure may be used

instead of the loop structures we listed above for looping over all shell multiplets. Or if we

need to construct an energy calculation by using the integrals calculated by a CCA

component, an option may be added: choose a program that will be used to calculate the

integrals from the list {GAMESS, MPQC, NWChem}. There may be other options or SIDL

interfaces required to construct a computation, which will complicate the implementation of

each component.

A more flexible way of implementing a computation of multiple packages through

components is to wrap the functionalities implemented for components to create the object-

oriented client-side classes. In this section, the C++ client-side interfaces for the GAMESS

computations, such as energy, gradient, and Hessian, will be presented, by using integrals

calculated by integral evaluators from GAMESS, NWChem or MPQC. Before we jump into

the detailed design, we need to understand how such a computation is processed. The

sequential steps for performing an energy calculation are as the follows:

1. Initialize GAMESS computations from a GAMESS input file: create a

GAMESS.Model object, from which the gamess_start and gamess_read_input

subroutines are invoked.

2. Create a GAMESS.GaussianBasisMolecular object based on the basis set and

molecular geometry information from the GAMESS input.

3. Create an IntegralEvaluatorFactory object for the specified package (GAMESS,

MPQC or NWChem); pass the GAMESS.GaussianBasisMolecular object and a

ChemistryIntegralDescrCXX.CompositeIntegralDescr object as parameters to get an

integral evaluator (1-, 2-, 3-, or 4-center).

www.manaraa.com

 52

4. Call the get_energy function of the GAMESS.Model object and the underlying

integral calculations are performed by using the integral evaluators from step 3.

Several Issues for Designing the Client-Side Interface

There are several issues we have to take care in the design of such a client-side

interface. For different chemistry programs, different loop structures for looping over all

multiplets are used (e.g. GAMESS uses a different 4-level loop structure for 2e-integral

computation from the one MPQC uses). The appropriate loop structure should be chosen for

the specified package as long as the end user picks a package for doing the integral

computations.

Also, the integral ordering in GAMESS is different from the integral ordering in

MPQC and NWChem (these two programs use the integral ordering defined by the cca-

chemistry group [24]). The conversion of the integral ordering for the integrals of each shell

multiplet should be done automatically before the integrals being used in a computation.

Since both MPQC and NWChem use the integral ordering defined in Joe Kenny’s paper [24],

we only need two kinds of conversion: from the integral order used in GAMESS to the

integral orders used in MPQC & NWChem; from the integral orders used in MPQC &

NWChem to the integral orders in GAMESS. These two kinds of conversion must be

incorporated within the client-side design of GAMESS.

Finally, some language interoperability issues need to be considered carefully when

constructing the client-side implementations. The underlying GAMESS computations are

implemented in FORTRAN 77, and the integral computations of MPQC is implemented in

C++. When constructing the C++ client-side of the GAMESS program, we should avoid

directly calling the GAMESS wrapper functions, instead those function calls should be

hidden in the server-side implementations.

For example, when calling a wrapper function that takes a parameter of the type

“int64_t” from the C++ client-side, I got a bunch of errors that “int64_t” is not defined.

However, if an integer of the type “int64_t” is defined inside the C++ client-side code, not

being passed to GAMESS wrapper functions, I will not get any errors. On the other hand, if

the same wrapper function is invoked through the server-side implementations, the same

errors will occur.

www.manaraa.com

 53

The reasons for designing the client-side in C++. It is natural to create the object-

oriented design by programming in C++. The real computations are performed by the

wrapper functions and GAMESS program, and the C++ client-side is used for reading user

input options and facilitating corresponding configurations, such as which package will be

used for providing integral evaluators. When only the references to integral evaluators are

passed from C++ to FORTRAN 77 for performing integral calculations for GAMESS

computations, the performance overhead from the language interoperability should not be

large. Since the C++ client-side should be easier to implement than the FORTRAN client-

side for GAMESS, it could be an experiment for implementing the FORTRAN client-side.

The Design of the C++ Client-Side Interface

Basically, several classes are designed for wrapping the integral computations

provided by CCA chemistry components: ClientIntEvalFactory (wraps

IntegralEvaluatorFactory components), ClientInteEval1 (wraps IntegralEvaluator1 class),

ClientIntEval2 (wraps IntegralEvalutor2 class), ClientIntEval3 (wraps IntegralEvaluator3

class) and ClientIntEval4 (wraps IntegralEvaluator4 class). For each class, there is a field:

package_, for specifying the name of the underlying program. The class

GAMESSCCAComputation is designed for GAMESS to perform chemistry computations

with the references to a GAMESS.Model object and a ClientIntEvalFactory object from the

specified program.

GAMESS iteratively calculates and stores the integrals for a shell multiplet in a one-

dimensional array. The integrals in this array will be either written to a disk file (the

conventional method) or immediately used by other subroutines (the direct method). The

integral evaluators from MPQC or NWChem will return a SIDL array of double data type for

the integrals of specified shell multiplet. The SIDL array returned by those integral

evaluators can be converted to a one-dimensional array and passed to GAMESS through the

CCA interfaces. We need to make sure the ordering of integrals in the array is the same as

the ordering in GAMESS integral array. A GAMESS wrapper function gamess_reorder, for

converting the integrals with the orders used in MPQC/NWChem to the orders used in

GAMESS, is needed before any integrals be used in GAMESS computations. On the other

www.manaraa.com

 54

hand, a method reorder_gtom in a ClientIntEval class is also needed to convert the integral

ordering in a GAMESS array to the format that MPQC & NWChem use.

In addition, several FORTRAN 77 functions are needed for underlying integral

computations. For example, gamess_eval2 is designed to loop over all 2-center integrals by

using the integral evaluator passed from the C++ interface (from MPQC or NWCHEM),

where the memory address of the integral evaluator2 is passed as “INTEGER*8”. Similarly,

the function gamess_eval4 is designed for looping over all shell quartets. Figure 14 show the

structure of the GAMESS client-side interfaces for computing energy, gradient and Hessian.

User
f, g, H f energy Options

g gradient

ModelGAMESS

NWChem

MPQC

GAMESSCCAComputation

fi, gi, Hi fi+1, gi+1, Hi+1

H Hessian

M molecular basis set

B1 integrals computed by an

integral evaluator

B2 integrals with the order that

complying with the order used in

Model computations

ClientIntEvalFactory

Integral
Evaluator

Sijkl bijkl

The Integral Order
Conversion

B2 i Iteration

Sijkl shell indexes

M
Chemistry Packages

 B1

GAMESSCCAComputation
class

ClientIntEvalFactory class

 SIDL Classes

integral order conversion
functions from GAMESS

Figure 14. The Client-Side design for GAMESS computations. A GAMESS.Model class
is used for performing energy, gradient and Hessian calculations. The underlying integral
calculations are provided by one of the three chemistry programs: GAMESS, NWChem
and MPQC. For the integrals provided by MPQC and NWChem, the integral orders will
be converted to the orders used in GAMESS before they are used in any GAMESS
computations.

www.manaraa.com

 55

CHAPTER 5. PERFORMANCE EVALUATION
Within the scope of GAMESS, performance bottlenecks can occur in many places

such as cache utilization, I/O or communication. Performance evaluation and monitoring

tools for each of these potential bottlenecks may take years to develop, so starting from

scratch is not a feasible solution. A useful approach is to use existing performance tools such

as TAU (Tuning and Analysis Utilities) [29] or PAPI [30I], and incorporate them into

GAMESS. These performance tools usually provide APIs for application developers to

develop performance evaluation functions according to application needs.

Incorporating performance tools into GAMESS usually requires inserting

performance function calls into the GAMESS source code, which is an intrusive approach.

With GAMESS components, we prefer a performance tool that provides an interface

compatible with the CCA standard, such that the access to performance tool APIs can be

through component ports instead of direct calls to the API. In particular, the TAU

performance system meets our requirements.

Our performance evaluation includes three parts: (1) test the overhead incurred by the

CCA framework; (2) evaluate the load balance strategy for the two-electron integral

calculation used in GAMESS CCA components; (3) explore the performance for integrating

the integral calculation of GAEMSS and MPQC.

The platform used for testing is a SMP cluster of 4 nodes, where each node has two

dual-core 2.0GHZ Xeon "WoodCrest" CPUs and 8GB of RAM. The nodes are

interconnected with both Gigabit Ethernet and DDR Infiniband. The operating system is Red

Hat Enterprise Linux 4.

5.1 TAU Performance Tools
TAU is based on a general computation model [29], which is a superset of the one

used by GAMESS. It provides technology for performance instrumentation, measurement,

and analysis for complex parallel systems. Performance information can be captured at the

node/context/thread level by using TAU. Besides performance instrumentation capability on

both the component level [31] and the source code level, TAU also provides an interface to

access the hardware counters through PAPI or PCL [31].

www.manaraa.com

 56

For CCA applications, TAU provides a performance component to measure the

performance of CCA component software through the common MeasurementPort interface.

Besides the performance component, TAU also provides MasterMind and Optimizer

components for performance data collection for performance modeling of components and

constructs optimal component assemblies, and Proxy Generators build proxies for both the

MeasurementPort and the Monitorport in performance component [32]. To successfully

install the TAU performance component and use all the provided functionality, both TAU

and PDT (Program Database Toolkit) [33] must first be installed TAU performance

components then can be set up.

5.2 Test the Performance Overhead of the CCA Framework
To test the overhead of the CCA framework in GAMESS calculations, we compared

the wall-clock times (in seconds) of the RHF energy calculations for four molecules:

ergosterol, Darvon, luciferin and nicotine, by using GAMESS with and without the CCA

framework. In both cases, the GAMESS/DDI/MPI model will be used, since this is the model

we will use for GAMESS to integrate with other packages through components. The TAU

timer is inserted between the calls to calculate energy in the GAMESS program and the

get_energy method of the GAMESS.Model class.

First, all the computations will run in sequential for testing the overhead incurred by

the CCA framework in a single CPU. Table 2 shows the wall-clock time of the energy

computations by using the GAMESS program (the second column) and the

GAMESS.ModelFactory component (the third column). For the GAMESS program, the type

of the computation is set as “energy” in the user input file. For the GAMESS.ModelFactory

component, the get_energy method of a GAMESS.Model class is called. The results show that

Table 2. The wall-clock time (Seconds) for the RHF energy calculation with & without the
CCA framework

Molecule No CCA With CCA
Darvon 3602.3 3607.4
luciferin 138.2 143.3
nicotine 61.9 64.3
h2o (CCQ) 10.1 11.2

www.manaraa.com

 57

the performance overhead incurred by using the CCA framework is less than 10~15 percent

of the wall-clock time when using the GAMESS program without CCA.

Then we run the energy calculation of the molecule “nicotine” in parallel for

comparing the scalability of the GAMESS program with and without CCA. Figure 15 shows

that the scalability of the GAMESS program is similar as the scalability of the GAMESS

CCA components.

Running GAMESS with 1 Proc/Node

0.000
0.500
1.000
1.500
2.000
2.500
3.000
3.500
4.000

1 2 4

of processes

th
e

sc
al

ab
ili

ty

no CCA
with CCA

Running GAMESS with 2 Procs/Node

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

1 2 4 8

of processes
th

e
sc

al
ab

ili
ty

no CCA
with CCA

Figure 15. The energy calculation of the molecule “nicotine” run on both the original
GAMESS program and the GAMESS CCA component, which we labeled as “no CCA” and
“with CCA”, respectively.

5.3 The Load Balance in Two-Electron Integral Computations
There are two kinds of load balancing strategies used in GAMESS to distribute the

tasks of calculating two-electron integrals among processes: the dynamic load balance and

the static load balance. For the dynamic load balance strategy, the tasks are dynamically

assigned to a process and a global counter in DDI is used to make sure each task will be

executed exactly once. This method adjusts the distribution of the tasks among processes

dynamically, since the current CPU usages and the quality of the network connection will

both affect the results whether or not a task is assigned to a process. For the static load

balance strategy, the tasks are assigned to each process according to the identity of the

process. This method guarantees the number of the tasks assigned to each process is the

same. Theoretically, the static load balance is more stable since the number of tasks assigned

to every process is the same, and the dynamic load balance is more efficient since the number

of tasks will be adjusted dynamically according to the work load of a process. By default, the

dynamic load balance is normally used in GAMESS.

www.manaraa.com

 58

DO 920 II = IST, NSHELL (first level)

DO 900 JJ = JST, II (second level)

IF USE DYNAMIC LOADBALANCE, GET THE CURRENT GLOBAL COUNTER
AND DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOP.

DO 880 KK = KST, JJ (third level)

IF USE STATIC LOADBALANCE, THE ID OF THE CURRENT PROCESS
COULD DECIDE IF CONTINUE WITH THE INNER BLOCK OF THE LOOP.

DO 860 LL = LST, KK (forth level)
CHECK FOR REDUNDANTIES BETWEEN THE 3 COMBINATIONS
(II,JJ//KK,LL), (II,KK//JJ,LL),(II,LL//JJ,KK)

COMPUTE SHELL QUARTET AND PROCESSING THE RESULTS

860 CONTINUE

860 CONTINUE

860 CONTINUE
860 CONTINUE

Figure 16. Load balancing in GAMESS TWOEI subroutine. The small case letters inside
parenthesizes indicate the level number of each loop. The block of inner loops surrounded
by the solid line shows the size of the task for a dynamic loading procedure. The block of
inner loops surrounded by the dashed line shows the size of task for a static loading.

In GAMESS the two-electron integrals are computed inside a 4-level nested loop

structure (Figure 16) in the TWOEI subroutine, The dynamic load balance is putted after the

second level of the loop, where the size of a task for each dynamic loading procedure is the

block of inner loops surrounded by the solid line. A global counter decides if a process needs

to continue with the inner loops for each loading procedure and each task is performed by

exactly one process. The static load balance is arranged after the third level of the loop, such

that the size of the task for each loading procedure is the inner loops surrounded by the

dashed line. Since the index of each task and the id entity of a process decide if the process

continues with the inner loop, no communication is needed in the static load balancing.

However, the chemistry integral interface IntegralEvaluator4Interface defines the

compute method to compute one shell quartet at a time. When we keep the load balance

being handled in the wrapper function - gamess_twoei_compute (this wrapper function called

www.manaraa.com

 59

by compute method of IntegralEvaluator4), the size of the task for each loading procedure is

just a single shell quartet. This is analogues to move the load balance in TWOEI to the 4th

level of the loop, and there is no guarantee that the performance in the original GAMESS 2e-

integral computation would be preserved.

We will use the molecule “nicotine” to test the performance and scalability of the

two-electron integral calculation when the dynamic load balance is located after the 2nd level,

the 3rd level and 4th level of the loop structure. Three groups of the performance data will be

compared and the results will help us to find an appropriate strategy to move the load balance

of the two-electron integral calculation from GAMESS to the component level without

sacrifice the performance. Note that we will not show the performance of the two-electron

integral calculation in TWOEI when moving the static load balance to the 4th level of the

loop structure since the change of the performance is not significant.

Test dynamic load balance. We run the 2e-integral calculation of “nicotine” by

using 1.1, 2.1, and 4.1 nodes in GAMESS/DDI/MPI mode, where x.y means in that

experiment we use x nodes and y CPUs on each node, and compare the scalability show

the wall-clock time for each node when using dynamic load balance in 2nd, 3rd and 4th level of

the loop structure. The upper chart of Figure 16 shows that the performance is much worse

when moving the dynamic load balance to the 4th level of the loop structure. When using 4

processes, the wall-clock time of calculating 2e-integrals when the dynamic load balance is at

the 4th level is almost double the wall-clock time when the dynamic load balance is at the 2nd

or the 3rd level. The lower chart of Figure 17 shows that the tasks are distributed unevenly

among processes when using 2.1 or 4.1 nodes, where in each case the process 0 computes

almost all of the shell quartets. This also causes the poor scalability when running in more

than one node.

The load balance in GAMESS CCA integral components

From the performance results showed in Figure 16, when the load balance is handled

in the 4th level of the loop structure, the number of tasks will be distributed unevenly among

processes when using more than one node, which will also lead to the poor scalability. This

means that we should not reduce the size of a task to a shell quartet. Since each function call

to the compute method of an integral evaluator4 returns the integrals of a shell quartet, we

www.manaraa.com

 60

The Parallel Performance of 2e-integral Calculation
When Moving the Dynamic Load balance to the 2nd,

3rd, and 4th Level of the Loop Structure

0

5

10

15

20

25

30

1.1 2.1 4.1

the number of processes

w
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)
2nd-level
3rd-level
4th-level

The Number of Shell Quartets Computed by Each CPU
When Running on 2.1 and 4.1 nodes with the Dynamic

Load Balance at the 4th Level

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

process 0 process 1 process 2 process 3

The process ID

nu
m

be
r

of
 s

he
ll

qu
ar

te
ts

2.1
4.1

Figure 17. The upper chart shows the parallel performance of the 2e-integral calculation
when moving the dynamic load balance to the 2nd, 3rd, and 4th level of the loop structure. The
lower chart shows the number of shell quartets computed by each process when the dynamic
load balance is moved to the 4th level of the loop structure.

cannot handle the load balance inside the wrapper function, or inside an integral evaluator.

Not losing or limiting the functionalities of the original GAMESS program, we copy the loop

structure for the 2e-integral calculation in the original GAMESS code to a TWOEIDriver

component that use the same load balancing approach as TWOEI, except that the 2e-integrals

are calculated by calling the compute method of the GAMESS.IntegralEvaluator4 object.

The implementation of TWOEIDriver has a flag – “load_balance” for choosing a type

of the load balance for the 2e-integral computation from components. The available options

are:

www.manaraa.com

 61

load_balance = 0, if no load balance
 load_balance = 1, if static load balancing is used
 load_balance = 2, if dynamic load balancing is used [DEFAULT]

The TWOEIDriver component is presented as an example of using GAMESS CCA

integral components for computing 2e-integrals with different choices of load balancing

methods, not being designed for a real computation. It is also used for the performance

evaluation of the 2e-integral computation by using GAMESS components. Since the loop

structure for the 2e-integral computation is copied from the TWOEI subroutine to the

component-level, it is fairly to predict the performance of the static and dynamic load

balance of the 2e-integral computation by using GAMESS CCA components should be as

good as the performance by using GAMESS.

Table 3. The number of shell quartets computed by using the dynamic load balance strategy
in the TWOEIDriver component

 1.1 1.2 2.1 1.4 2.2 4.1

process 0 2.2808E+06 1.16488E+06 1.11668E+06 567397 571247 555183

process 1 1.11592E+06 1.16413E+06 576551 565618 570469

process 2 557617 580110 564786

process 3 579240 563830 590367

Table 3 shows the number of shell quartets computed by each process when

performing 2e-integral computation with GAMESS CCA components, where the number of

shell quartets computed on each process is very close when using 1.1, 1.2, 2.1, 1.4, 2.2 and

4.1 nodes.

5.4 Performance Evaluation for Integral Computations
In this section we present only the performance of the two-electron integral

computation since this computation takes significantly more CPU time than the one-electron

integral computation does. We measure the wall-clock time for calculating all shell quartets

of a molecule by using the GAMESS program, GAMESS wrapper functions, GAMESS CCA

integral components and GAMESS & MPQC CCA components. First, we examine the

performance overhead incurred by the design of the wrapper functions. This is done by

www.manaraa.com

 62

invoking the gamess_twoei_compute wrapper function inside the four-level nested loop

structure, and comparing the results with the time of the same computation by using the

original GAMESS two-electron integral computations. Second, we examine the performance

overhead caused by the CCAFFEINE framework when running the GAMESS CCA integral

computations. This is done by evaluating the performance overhead of

GAMESS.IntegralEvaluator4 class, which in turn uses the wrapper functions for calculation.

Finally, we examine the performance overhead incurred by the integration of GAMESS and

MPQC.

The TAU performance tools are used for measuring the performance of two-electron

integral computations. We insert TAU timers in both component-level methods and in

GAMESS subroutines. The wall-clock time of looping over all shell quartets is used as the

performance data and the time is measured in seconds.

Since both NWChem and MPQC parallelize the routines that call the integral

computations, instead of parallelizing the integral computations themselves, we have decided

to show only sequential performance data here. .

Test cases. Four molecules are used as our test cases. Table 4 shows the names of the

molecules, the basis set, the number of atoms, the number of shells, the number of basis

functions, and the number of shell quartets. The test cases are listed in descending order

according to the number of two electron integrals.

The integral screening in GAMESS two-electron integral computation. Integral

screening is a technique to ignore calculating integrals which are estimated to have little or

no contribution to the final results of the Fock matrix [22]. GAMESS by default uses integral

screening techniques to screen out small integrals in the two-electron integral computation.

In the design of CCA integral components, the integral screening has been separated from the

integral computation, and is used as an independent option. Since the three chemistry

packages use different screening techniques and default thresholds for small integrals, the

number of non-zero two-electron integrals being calculated by each package is different from

each other. We turn off the integral screening in every package when conducting

interoperability testing to make sure every integral component will compute the same number

of shell quartets.

www.manaraa.com

 63

Table 4. Test GAMESS integral computation

molecule basis set # of atoms # of shells # of
basis functions

of
shell quartets

ergosterol 6-31G* 73 204 523 2.18625E+08
Darvon 6-31G* 54 158 433 7.88956E+07

luciferin 6-31G* 26 90 294 8.38656E+06

nicotine 6-31G* 44 76 208 4.2822E+06

In GAMESS, a native buffer (in memory), GHONDO, is allocated for storing 2e-

integrals of one shell quartet. The results of GHONDO are either read and saved to a disk

file, or used immediately, and the values of GHONDO are reset to zeros and used for storing

2e-integrals for another shell quartet in the next iteration. However, to componentize 2e-

integral calculations for a shell quartet, the results should be stored in a buffer passed from a

calling function (or an integral evaluator4). Instead of using GHONDO for storing the results

of computing a shell quartet, we use the buffer passed to the wrapper function. The resulting

integrals of each shell quartet can be accessed through the reference to the buffer by the end

of each iterate and no disk I/O is needed for writing the results to a disk file.

To compare the performance of the original GAMESS subroutine and the wrapper

function, we modified the original GAMESS code to ignore disk I/O after computing each

shell quartet (to be compatible with our design in the wrapper function). The second column

of Table 5 shows the performance data for computing 2e-integrals in GAMESS.

Test GAMESS wrapper integral computation. The third column of Table 5 shows

the performance for 2e-integral computation using wrapper functions. The overhead of the

2e-interal computation using the wrapper functions is about 17% of the 2e-integral

computation with the original GAMESS code.

In the original GAMESS code, two-electron integrals are computed by looping over

all shell quartets in four nested loops. In GAMESS wrapper functions, the

gamess_twoei_compute function computes one shell quartet at a time. Thus, when looping

over all shell quartets, we have ()4NO function calls to the gamess_twoei_compute function. In

the original GAMESS code, statements that are inside the first, second or third-level of the

four-level loop structure, now need to be executed for each shell quartet, about ()4NO times. If

www.manaraa.com

 64

Table 5. Wall-clock times (sec) for two-electron integral computations

molecule GAMESS GAMESS Wrapper
Functions

GAMESS CCA
Components

ergosterol 801.52 921.35 980.16
Darvon 361.47 422.72 445.15
Luciferin 63.39 74.11 77.06
Nicotine 22.93 26.71 28.50

there is an overhead introduced by each single call to the compute method, the overall

performance overhead can be significant.

Test GAMESS CCA integral computation. The goal of this experiment is to test

the performance overhead of the CCAFFEINE framework. The GAMESS wrapper functions

are used for implementing GAMESS CCA components. Thus, a buffer is passed from a

GAMESS.IntegralEvaluator4 object to the GAMESS wrapper functions for storing results of

a shell quartet and the reference to the buffer is returned. The fourth column of Table 5

shows the running time of the 2e-integral calculation obtained using GAMESS CCA integral

components. It shows that the performance overhead is relatively small, since all times are

within 10% of the original running time. The same amount of performance overhead incurred

by the CCA framework has also been mentioned in the previous literatures. However, the

total performance overhead incurred for componentizing integral calculation (include the

wrapper functions and CCA frameworks) is relatively large, about 28.7% (1.17*1.1-1). This

overhead may be reduced through either implementing GAMESS CCA components in

FORTRAN (the current version is implemented in C++), or refining the GAMESS wrapper

functions.

Integration of GAMESS & MPQC. Integral computations using CCA components

from both MPQC and GAMESS are conducted through the process outlined in Section 3.5.

In our testing, we produced the wall-clock time for computing two-electron integrals by

using GAMESS CCA components, and GAMESS & MPQC components. Here we choose

the water molecule with the cc-pVQZ and aug-cc-pVQZ basis sets to perform the two-

electron integral calculations. The performance results of such two-electron integral

calculations by using the original GAMESS program and the original MPQC program are

expected to be very close, since the water molecule is relatively small and the basis sets we

www.manaraa.com

 65

used here is quite large. The MPQC program contains only one integral code, which is

sophisticated and slower than some integral codes in GAMESS (there are four different

integral codes in GAMESS). When using large basis sets, GAMESS will choose the more

sophisticated/slower integral code, which has similar performance with the integral code in

MPQC. Table 6 shows that the discrepancy of the 2e-integral computation for the water

molecule is very small between GAMESS CCA components and GAMESS & MPQC CCA

components, and these results are exactly what we have expected.

Table 6. Wall-clock times (sec) for testing the water molecule with GAMESS and MPQC
basis set GAMESS CCA

Components
GAMESS & MPQC CCA

Components
cc-pVQZ 3.63 3.65

aug-cc-pVQZ 16.07 15.96

www.manaraa.com

 66

CHAPTER 6. DISCUSSION AND CONCLUSION
In the process of developing integral components, several issues affected our design

of components, or delayed the progress of component development. We discuss these issues

in this section.

Low-level interoperability

Ideally if similar functions from different packages are componentized, complying

with the same interface, we should be able to use these components interchangeably.

However, if components are designed without substantial modifications to existing

applications (e.g., using wrapper functions), the ``plug-and-play'' goal may be difficult to

achieve.

The differences in the approaches to develop integral components provide a good

example of the difficulties faced in interfacing low-level components in a “plug-and-play”

fashion. For the MPQC integral component, the underlying software architecture is object-

oriented and is more amenable to the encapsulation concepts of component architectures. For

GAMESS, a package with over two decades of development history and developers scattered

around the world, encapsulation into components may be error-prone in part because the

subroutines to be encapsulated may be entangled with other subroutines developed by many

scientists over a long period of time. To solve this problem, we chose to tightly couple the

initialization processes of the original GAMESS program and the GAMESS CCA

architecture, even though, in the standardized interfaces, it may be possible to use

components from other packages for initialization.

In addition, the different parallel mechanisms used in a computation may also hinder

the interaction of low-level components in a “plug-and-play” fashion. GAMESS uses the

dynamic/static load balance strategies to distribute two-electron integrals across processes,

while NWChem and MPQC parallelize the functions that use the two-electron integral

calculations. This different design of the parallel mechanisms for 2e-integral calculations will

affect the way and the performance of using the integral evaluators from GAMESS and the

other two packages. For example, when a GAMESS energy computation uses the 2e-

integrals computed by MPQC CCA components, the performance of using integrals from

www.manaraa.com

 67

MPQC may be worse than using integrals from GAMESS since the MPQC integral

evaluators can only run sequentially by themselves. Currently, we just limit our application

to use the integral evaluators in a single CPU. However, to reach a better or keep the original

scalability, chemists from different packages must find out a way to balance the way of using

integral evaluators from different packages.

Issues for code efficiency

The integral screening improves the efficiency of integral computations. In

GAMESS, screening is a ‘built-in’ function that is integrated with integral computations and

can be turned on or off by setting a flag in the input file. In MPQC, screening is not coupled

with integral computations but rather may be performed by the caller of integral

computations.

 The interfaces for integral and other quantum chemistry computations are defined

from a chemistry algorithm point of view. That is, the interfaces for data and methods

performing electronic structure calculations are defined, but not for the procedures to

improve code efficiency, such as using of screening. On one hand, we want to keep the

interfaces as clean as possible, so they should include only data and methods that are

essential to a computation; on the other hand, if a technique to improve code efficiency is

widely used by every package, we may want to include this technique somewhere in the

interface. How to seamlessly integrate via common interfaces computations and their

efficient implementations, is a difficult design choice.

Version control and testing procedure

Figure 18 shows the package dependence in this project. Besides three chemistry

packages, we also use performance tools provided by TAU [17] to conduct component level

performance evaluations. All packages, even compilers, are constantly updated with new

versions. Whenever a certain package is updated, all the other packages may require

rebuilding, and we have to conduct stability and compatibility testing all over again. The

process of rebuilding packages is time consuming; if errors occur during stability and

compatibility testing, locating the source of the error is equally time-consuming. When some

www.manaraa.com

 68

bugs are found in a new version of a package, we may have to roll back to an older stable

version to continue the development process.

With the scope of quantum chemistry computations and the capabilities provided by

the three packages, we expect more components will be developed. Exploring/developing a

capable tool to minimize efforts in maintaining/testing packages is essential in a real-size

project such as this one.

GAMESS MPQC NWChem

TAU
Performance

Tools

Cca-chem-apps

Cca-chem-generic

Fortran 90Fortran 77C++

CCA-Tools

Babel

JavaC Python

Figure 18. The package dependence for the CCA chemistry project.

Conclusion and future works

In this thesis, I present our experience in developing CCA components based on a

large-scale quantum chemistry program. The two parallel mechanisms for GAMESS CCA

components and the potential problems for each model are discussed. The process of

componentizing GAMESS energy, gradient, Hessian and integral computations is also

delineated in detail and issues of interoperability are discussed. This will provide application

scientists a perspective about the problems they may be facing when componentizing their

packages to explore interoperation with other software. We are extending our experiments to

integrate GAMESS and NWChem at the fine-grained level and also build a complete

chemistry computation, such as calculating the energy, by using any two of the three

chemistry packages through the CCA interfaces. Currently, we have designed the client-side

interfaces for integrating GAMESS energy calculation with the other two packages through

www.manaraa.com

 69

integral computations. The implementation of the GAMESS client-side computations is one

of our future works.

Based on our experience, community-agreed interfaces and data standards provide

only the first step to componentization of a package; substantial efforts are needed to

improve the usability of components, control versions of the underlying software, minimize

overhead caused by extra layers of function calling, and standardize testing procedures to

efficiently explore the errors in coupling many software packages. Componentizing a large-

scale legacy software package is an especially challenging task. In other words,

comprehensive scientific software engineering is essential in developing components that are

truly shareable between scientific packages.

Future works. Integrating GAMESS and NWChem at the fine-grained level, such as

on integral calculations, will be one of our future works. We will also build a complete

chemistry computation, such as calculating the energy, by using any two of the three

chemistry packages through the CCA interfaces.

www.manaraa.com

 70

ACKNOWLEDGEMENTS
I would like to express my gratitude to all those who gave me the possibility to

complete this thesis. I want to thank Meng-Shiou Wu from Scalable Computing Laboratory

of Ames Laboratory. He is a very generous person and excellent scientist who always willing

to share his knowledge with others. For each paper being published, he is the one that give

me the most advises and help me refining the paper.

Thank Ricky A. Kendall from Oak Ridge National Laboratory, who let me start this

project and continuously support this research. Thank my co-major professor Masha

Sosonkina from Scalable Computing Laboratory of Ames Laboratory and the department of

computer science. She is wise and active in the CCA community, and always willing to help

me and guide me for my research. Thank Mark Gordon from Ames Laboratory and the

department of chemistry, who does the best to support my research and is nice to everyone

with his warming smiles. Thank my co-major professor Ying Cai from the department of

computer science, who gives me a lot of help in my graduate studies.

Thank Theresa L. Windus from the department of Chemistry and Ames Laboratory in

Iowa State University for her help with the chemistry concepts and the NWChem program.

Thank Mike Schmidt from the department of Chemistry and Ames Laboratory, Iowa State

University for the information on GAMESS and DDI. I also want to thank Joseph P. Kenny

from Sandia National Laboratories for his helpful discussions on CCA frameworks and

chemistry components.

This work was supported by a SciDAC grant from the Department of Energy via the

Ames Laboratory and Sandia National Laboratory. This work was performed at Ames

Laboratory under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy.

The United States government has assigned the DOE Report number IS-T 2710.

www.manaraa.com

 71

REFERENCES
[1] Microsoft Corporation, COM, Component Object Model Technologies, 2007,

http://www.microsoft.com/com/default.mspx
[2] Steve Vinoski, "CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments," IEEE Communications Magazine, vol. 14, no. 2, February 1997
[3] Sun Microsystem, Inc., JavaBeans, 2007, http://java.sun.com/products/javabeans/
[4] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L. Dahlgren, K.

Damevski, W.R. Elwasif, T. G. W. Epperly, M. Govindaraju, D. S. Katz, L. F. Diachin, J. A.
Kohl, M. Krishnan, G. Kumfert, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C. McInnes, J.
Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, and Zhou. S., “A
Component Architecture for High-Performance Scientific Computing,” Intl. J. High-Perf.
Computing Appl., 2004.

[5] CCA, The Common Component Architecture Forum, http://www.cca-forum.org
[6] Babel, January 2004, http://www.llnl.gov/CASC/components/babel.html
[7] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Cordon, J.H. Jensen, S.

Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery,
“General Atomic and Molecular Electronic Structure System”, J. Comput. Chem. 14, 1347-
1363 (1993)

[8] The Massively Parallel Quantum Chemistry Program (MPQC), Version 2.3.1, Curtis L.
Janssen, Ida B. Nielsen, Matt L. Leininger, Edward F. Valeev, Edward T. Seidl, Sandia
National Laboratories, Livermore, CA, USA, 2004.

[9] Aprà, E.; Windus, T.L.; Straatsma, T.P.; Bylaska, E.J.; de Jong, W.; Hirata, S.; Valiev, M.;
Hackler, M.; Pollack, L.; Kowalski, K.; Harrison, R.; Dupuis, M.; Smith, D.M.A; Nieplocha,
J.; Tipparaju V.; Krishnan, M.; Auer, A.A.; Brown, E.; Cisneros, G.; Fann, G.; Fruchtl, H.;
Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.;
Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood,
D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.;
Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.;
Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.; Zhang, Z.;
"NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.7" (2005),
Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA.

[10] J. P. Kenny, S. J. Benson, Y. Alexeev, J. Sarich, C. L. Janssen, L. C. McInnes, M. Krishnan, J.
Nieplocha, E. Jurrus, C. Fahlstrom and T. L. Windus, "Component-Based Integration of
Chemistry and Optimization Software", Journal of Computational Chemistry, 24(14) 1717-
1725, 2004

[11] Ryan M. Olson, Michael W. Schmidt, Mark S. Gordon, Alistair P. Rendell, “Enabling the
Efficient Use of SMP Clusters: The GAMESS/DDI Model”, SC’03, November 15-21, 2003,
Phoenix, Arizona, USA

[12] MPI, Message Passing Interface Forum, http://www.mpi-forum.org
[13] Boyana Norris, Jaideep Ray, Robert C. Armstrong, Lois C. McInnes, David E. Bernholdt,

Wael R. Elwasif, Allen D. Malony, Sameer Shende: Computational Quality of Service for
Scientific Components. CBSE 2004: 264-271

[14] Ben Allan, Rob Amstrong, Sophia Lefantzi, Jaideep Ray, Edward Walsh, Pippin Wolfe,
Ccaffeine - a CCA component framework for parallel computing, January 2001,
http://www.cca-forum.org/ccafe/

http://www.microsoft.com/com/default.mspx
http://www.cca-forum.org/ccafe/

www.manaraa.com

 72

[15] Felipe Bertrand and Randall Bramley, “DCA: A distributed CCA framework based on MPI”,
Proceedings of the 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS'04), April 2004

[16] Gary Kumfert, Scott Kohn, Tammy Dahlgren, Tom Epperly, Steve Smith, and Bill Bosl,
“Introducing Babel Decaf.”, Common Component Architecture Forum, Indiana University,
Bloomington, IN, October 2-3, 2001. LLNL document UCRL-PRES-145982

[17] Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu, Aleksander Slominski, Dennis
Gannon, and Randall Bramley, “XCAT 2.0: A Component-Based Programming Model for
Grid Web Services”, Technical Report-TR562, Department of Computer Science, Indiana
University. Jun 2002

[18] Madhusudhan Govindaraju, Michael R. Head, Kenneth Chiu, "XCAT-C++: Design and
Performance of a Distributed CCA Framework", The 12th Annual IEEE International
Conference on High Performance Computing (HiPC) 2005, pp: 270-279, December 18-21,
Goa, India

[19] SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and
Imaging Institute (SCI), 2007, http://software.sci.utah.edu/scirun.html

[20] V. S. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency:
Practice and Experience, 2, 4, pp 315--339, December, 1990

[21] J. Nieplocha, RJ Harrison, and RJ Littlefield, Global Arrays: A nonuniform memory access
programming model for high-performance computers, The Journal of Supercomputing,
10:197-220, 1996

[22] Attila Szabo and Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced
Electronic Structure Theory, Dover, ISBN 0486691861

[23] Frank Jensen, Introduction to computational chemistry, John Wiley & Sons, ISBN-
0471984256

[24] Joseph P. Kenny, Curtis L. Janssen, Edward F. Valeev, and Theresa L. Windus, “Components
for Integral Evaluation in Quantum Chemistry”, Journal of Computational Chemistry,
submitted.

[25] MPQC, The Massively Parallel Quantum Chemistry Program, 2006, http://www.mpqc.org
[26] Tyrrel, Symmetry in Chemistry - Group Theory, January 2000,

http://www.science.siu.edu/chemistry/tyrrell/group_theory/sym1.html
[27] GAMESS, The General Atomic and Molecular Electronic Structure System Homepage, 2007,

http://www.msg.ameslab.gov/GAMESS/GAMESS.html
[28] Joseph P. Kenny, Common Component Architecture Components for Chemistry, 2007,

http://myrmidon.ca.sandia.gov/dokuwiki/doku.php?id=cca_chem:main, October 2007
[29] S. Shende and A. D. Malony, "The TAU Parallel Performance System," (submitted to)

International Journal of High Performance Computing Applications, ACTS Collection Special
Issue, 2005.

[30] Browne, S., Deane, C., Ho, G., Mucci, P. "PAPI: A Portable Interface to Hardware
Performance Counters," Proceedings of Department of Defense HPCMP Users Group
Conference, June 1999.

[31] R. Berrendorf and B. Mohr. “PCL -- The Performance Counter Library: A Common Interface
to Access Hardware Performance Counters on Microprocessors”. Technical report, Research
Centre Juelich GmbH, Juelich, Germany, September 2000.

[32] Tuning and Analysis Utilities, TAU’s CCA Tools, http://www.cs.uoregon.edu/research/tau/cca
[33] Advanced Computing Laboratory, Los Alamos National Laboratory: PDT: Program Database

Toolkit, Supercomputing '99 flyer, Los Alamos National Laboratory Publication LALP-99-
204, November 1999

http://www.mpqc.org/
http://www.msg.ameslab.gov/GAMESS/GAMESS.html

www.manaraa.com

 73

APPENDIX A. THE GAMESS CLIENT-SIDE INTERFACE

The C++ interfaces for the GAMESS client-side:

/**
* The ClientIntEvalFactory class wraps the
* IntegralEvaluatorFactory component for different packages.
*/

class ClientIntEvalFactory {

 public:

/* the reference to an integral evaluator factory */
Chemistry::QC::GaussianBasis::IntegralEvaluatorFactoryInterface
 evalfactory;

/*
 * the constructor
 * @package the package that provides integral calculation
 * @molecular the Molecular object stores basis set information
 */
ClientIntEvalFactory(
 string package,
 Chemistry::QC::QaussianBasis::MolecularInterface molecular)
{
 // set the package name
 if (package is GAMESS, NWChem or MPQC) package_ = package;
 else package_ = “GAMESS”; // default

 create an evaluator factory “evalfactory”,
 this is different for the different package

 // initialize Molecular object
 molecular_ = molecular;
}

/* get the package name */
string get_package() {
 return package_;
}

/*
 * get an ClientIntEval1 object with the specified integral type.
 * GAMESS does not provide the integral evaluator1.
 * @type the type of the integral
 */
ClientIntEval1 get_evaluator1(string type) {
 check to see if the type of integral exists

 // create a composite integral descriptor
 create_descriptor(type);

www.manaraa.com

 74

 // create an integral evaluator1
 Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1 =
 evalfactory.get_evaluator1(molecular_, descr);

 // create a ClientIntEval1 object
 ClientIntEval1 client_eval1 =
 new ClientIntEval1(type, package_, eval1);

 return client_eval1;
}

/*
 * get a ClientIntEval2 object with the specified integral type.
 * @type the type of the integral
 */
ClientIntEval2 get_evaluator2(string type)
{
 check to see if the type of integral exists

 // create a composite integral descriptor
 create_descriptor(type);

 // create an integral evaluator2
 Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2 =
 evalfactory.get_evaluator2(molecular_, molecular_, descr);

 // create a ClientIntEval1 object
 ClientIntEval1 client_eval2 =
 new ClientIntEval1(type, package_, eval2);

 return client_eval2;

}

/*
 * get a ClientIntEval3 object with the specified integral type.
 * GAMESS does not provide the integral evaluator3.
 * @type the type of the integral
 */
ClientIntEval3 get_evaluator3(string type)
{
 check to see if the type of integral exists

 // create a composite integral descriptor
 create_descriptor(type);

 // create an integral evaluator3
 Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3 =
 evalfactory.get_evaluator3
 (molecular_,molecular_,molecular_,descr);

 // create a ClientIntEval1 object
 ClientIntEval3 client_eval3 =
 new ClientIntEval3(type, package_, eval3);

www.manaraa.com

 75

 return client_eval3;

}

/*
 * get a ClientIntEval4 object with the specified integral type
* @type the type of the integral
*/
ClientIntEval4 get_evaluator4(string type)
{
 check to see if the type of integral exists

 // create a composite integral descriptor
 create_descriptor(type);

 // create an integral evaluator4
 Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4 =
 evalfactory.get_evaluator4
 (molecular_,molecular_,molecular_,molecular_,descr);

 // create a ClientIntEval4 object
 ClientIntEval1 client_eval4 =
 new ClientIntEval1(type, package_, eval4);

 return client_eval4;

}

 private:

 // the package name

string package_;

// the reference to a molecular object
Chemistry::QC::GaussianBasis::MolecularInterface molecular_;

/**
* Create descriptor with the specified integral type.
* A descriptor is needed for each integral evaluator.
* @type the integral type
*/

Chemistry::QC::GaussianBasis::CompositeIntegralDescrInterface
 create_descriptor(string type)
{
 create a CompositeIntegralDescr object based on the type
 of the integrals
}

};

/**
* the implementation of ClientIntEval1 may not be necessary for
* GAMESS since in GAMESS only 2-center and 4-center integrals are

www.manaraa.com

 76

* used.
*/

class ClientIntEval1 {

 public:

/*
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEval1(
 string type,
 string package,
 Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1)
{
 type_ = type;
 package_ = package;
 eval1_ = eval1;
}

/*
 * get an integral evaluator1
 */
Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface get_eval1()
{
 return eval1_;
}

/*
 * Set the reference to the integral buffer from the integral
 * evaluator1. This method has to be called before get_array, or any
 * reorder method is called.
 */
void set_array(
 Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)
{
 buffer_ = eval1_.get_array(desc);
}

/**
 * return the reference to the integral array
 */
double* get_array()
{
 return buffer_;
}

 private:

// the reference to an integral evaluator1
Chemistry::QC::GaussianBasis::IntegralEvaluator1Interface eval1_;

 // the type of the integral evaluator1

string type_;

www.manaraa.com

 77

// the package name
string package_;

// the one-dimension array that holds the integrals
// for a one-center integral.
double* buffer_;

}

class ClientIntEval2 {
 public:

/**
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEval2(string type, string package,
 Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2)
{
 type_ = type;
 package_ = package;
 eval2_ = eval2;
}

/*
 * get an integral evaluator2
 */
Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface get_eval2()
{
 return eval2_;
}

/**
 * Set the reference to the integral buffer from the integral
 * evaluator2. This method has to be called before get_array, or any
 * reorder method is called.
 */
void set_array(
 Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)
{
 buffer_ = eval2_.get_array(desc);
}

/**
 * return the reference to the integral array
 */
double* get_array()
{
 return buffer_;
}

/**
 * reorder the integrals in the buffer
 * to the integral ordering defined by the cca-chemistry group [24]

www.manaraa.com

 78

 */
void reorder_gtom()
{
 if (package_ == “GAMESS”)
 reorder the integrals (in buffer_) to the order used in
 MPQC/NWCHEM
}

 private:

/* the reference to an integral evaluator2 */
Chemistry::QC::GaussianBasis::IntegralEvaluator2Interface eval2_;

 // the type of the integral evaluator2

string type_;

// the package name
string package_;

// the one-dimension array that holds the integrals
// for a shell doublet.
double* buffer_;

};

/**
* the implementation of ClientIntEval3 may not be necessary for
* GAMESS since in GAMESS only 2-center and 4-center integrals are
* used.
*/

class ClientIntEval3 {
 public:

/**
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEval3(string type, string package,
 Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3)
{
 type_ = type;
 package_ = package;
 eval3_ = eval3;
}

/*
 * get an integral evaluator3
 */
Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface get_eval3()
{
 return eval3_;
}

/*
 * Set the reference to the integral buffer from the integral

www.manaraa.com

 79

 * evaluator3. This method has to be called before get_array, or any
 * reorder method is called.
 */
void set_array(
 Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)
{
 buffer_ = eval3_.get_array(desc);
}

/**
 * return the reference to the integral array
 */
double* get_array()
{
 return buffer_;
}

 private:

// the reference to an integral evaluator3
Chemistry::QC::GaussianBasis::IntegralEvaluator3Interface eval3_;

 // the type of the integral evaluator3
string type_;

// the package name
string package_;

// the one-dimension array that holds the 3-center integrals
double* buffer_;

};

class ClientIntEval4 {
 public:

/**
* constructor
* initialize an integral evaluator for the specified package and
* the type of the integral
*/
ClientIntEval4(string type, string package,
 Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4)
{
 type_ = type;
 package_ = package;
 eval4_ = eval4;
}

/*
 * get an integral evaluator4
 */
Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface get_eval4()
{
 return eval4_;
}

www.manaraa.com

 80

/**
 * Set the reference to the integral buffer from the integral
 * evaluator4. This method has to be called before get_array, or any
 * reorder method is called.
 */
void set_array(
 Chemistry::QC::GaussianBasis::IntegralDescrInterface desc)
{
 buffer_ = eval4_.get_array(desc);
}

/**
 * return the reference to the integral array
 */
double* get_array()
{
 return buffer_;
}

/**
 * reorder the integrals in the buffer
 * to the integral ordering defined by the cca-chemistry group [24]
 */
void reorder_gtom()
{
 if (package_ == “GAMESS”)
 reorder the integrals (in buffer_) to the order used in
 MPQC/NWCHEM
}

 private:

// the reference to an integral evaluator4
Chemistry::QC::GaussianBasis::IntegralEvaluator4Interface eval4_;

 // the type of the integral evaluator4

string type_;

// the package name
string package_;

// the one-dimension array that holds the integrals
// for a shell quartet.
double* buffer_;

};

/**
 * to perform GAMESS computation by using integrals
 * from different packages
 */
class GAMESSCCAComputation {

www.manaraa.com

 81

 public:

/*
 * A ClientIntEvalFactory object for providing
 * integral calculation from GAMESS, MPQC or NWCHEM.
 */
ClientIntEvalFactory evalfac;

/* constructor */
GAMESSCCAComputation()
{
 integral_package_ = “GAMESS”;
 intputfile_ = “”;
}

/*
 * set the name of the package for integral calculation.
 * the default package is GAMESS.
 */
void set_integral_package(string integral_package)
{
 integral_package_ = integral_package;
}

/*
 * set the full path to the GAMESS input file
 */
void set_inputfile(string inputfile)
{
 inputfile_ = inputfile;
}

/*
 * initialize a GAMESS.Model object and
 * a ClientIntEvalFactory object.
 * initialize GAMESS computation.
 */
int initialize()
{
 initialize the model object

 // pass the input file for GAMESS wrapper functions to read
 model.setCoordinatesFromFile(inputfile.c_str());

 // initialize the molecular object
 molecular = GAMESS::GaussianBasis_Molecular::_create();
 molecular.initialize(“”);

 // initialize the ClientIntEvalFactory object
 // cast the GAMESS Molecular object to
 // Chemistry::QC::GaussianBasis::MolecularInterface
 evalfac = new ClientIntEvalFactory(integral_package_,molecular);
}

/*

www.manaraa.com

 82

 * calculate energy by using the integrals provided by
 * the specified package.
 */
double get_energy() {
 double f = model.get_energy();
 return f;
}

/*
* @type the type of the integrals
* construct the two-level loop structure to calculate all of
* shell doublets and use the 1e-integral iteratively
 */
void compute_oneei(string type)
{
 // create a ClientIntEval2 object for the specified package
 ClientIntEval2 client_eval2 = evalfac.get_evaluator2(type);

 // pass the reference to a
 // Chemistry::QC::GaussianBasis::IntegralEvaluator2 object
 // to the FORTRAN 77 function
 gamess_eval2(client_eval2.get_eval2());
}

/*
 * construct the four-level loop structure to calculate all of
* shell quartets and use the 2e-integral iteratively.
 */
void compute_twoei()
{
 // create a ClientIntEval4 object for the specific package
 ClientIntEval4 client_eval4 = evalfac.get_evaluator4(type);

 // pass the reference to a
 // Chemistry::QC::GaussianBasis::IntegralEvaluator4 object
 // to the FORTRAN 77 function
 gamess_eval4(client_eval4.get_eval4());

}

 private:
 // the name of the package for providing integral calculations

string integral_package_;

// the full path to the GAMESS input file
string inputfile_;

// the molecular object stores the basis set information
GAMESS::GaussianBasis_Molecular molecular;

/*
 * A GAMESS.Model object for initializing GAMESS computation;
 * calculating energy, gradient and Hessian.
 */
GAMESS::Model model;

www.manaraa.com

 83

};

The interfaces for underlying FORTRAN 77 wrapper functions

c --
c @buffer the integral array that needed to reorder
c @size the size of the buffer
c @type the type of the integral (2-center or 4-center)
 subroutine games_reorder(buffer,size,type)
 dimension buffer(size)
 character type*(*)

c --
c The 2-level loop structure of looping over all shell doublets
c @eval2 the memory address of an integral evaluator2 object
c @package the package that provides the integral evaluator2
 subroutine gamess_eval2(eval2, package)
 integer*8 eval2
 character package*(*)

c we will use the different loop structure for different packages
c for each iterate, call the compute method of the integral evaluator2
c to calculate integrals for a shell doublet.

c if package = MPQC or NWCHEM, gamess_reorder needs to be called
c before the integrals can be used by GAMESS program

c ---
c The 4-level loop structure of looping over all shell quartets
c @eval4 the memory address of an integral evaluator4 object
c @package the package that provides the integral evaluator4

 subroutine gamess_eval4(eval4, package)

 integer*8 eval4
 character package*(*)

c we will use the different loop structure for different packages
c for each iterate, call the compute method of the integral evaluator4
c to calculate integrals for a shell quartet.

c use the FORTRAN 77 binding of integral evaluator4 for calculating
c two-electron integrals

c if package = MPQC or NWCHEM, gamess_reorder needs to be called
c before the integrals can be used by GAMESS program

c ---
c calculate RHF energy by using the integrals calculated from one
c of the GAMESS, MPQC and NWChem packages

 subroutine gamess_rhfcl

www.manaraa.com

 84

c copy codes from RHFCL subroutine
c modify the calls to ONEEI to call gamess_eval2
c modify the calls to TWOEI to call gamess_eval4

www.manaraa.com

 85

APPENDIX B. COMMENTS FOR THE COMMON BLOCK “NSHEL”
-ex- Gaussian exponents, for every symmetry unique primitive
-cs- through -ci- are s,p,d,f,g,h,i contraction coefficients normally only one of the -cx- arrays

will be non-zero, for any given exponent in -ex-. the exception is "L" shells, where both
-cs- and -cp- will have (different) values.

-nshell- is the total number of shells (p shell means x,y,z, d shell means xx,yy,zz,xy,xy,yz,
etc.) the various "K"s define each shell's contents:

-katom- tells which atom the shell is centered on, normally more than one shell exists for
every atom.

-kloc- gives the location of this shell in the total AO basis, please read the example.
-kstart- is the location of the first exponent and the first contraction coefficient contained in a

particular shell. Thus, KLOC is an AO counter, KSTART a primitive counter.
-kng- is the number of Gaussians in this shell, their data are stored consecutively beginning at

the -kstart- value.
-ktype- is 1,2,3,4,5,6,7 for s,p,d,f,g,h,i. note that the value stored in -ktype- for an "L" shell

is a 2, so that by itself, -ktype- cannot distinguish a "p" from a "L". Thus, KTYPE is one
higher than the true angular momentum.

-kmin- and -kmax- are the starting and ending indices of the shell. These are defined as

 s p d f g h i L
Kmin 1 2 5 11 21 34 57 1
Kmax 1 4 10 20 35 56 84 4

so you can tell an "L" shell by its running from 1 to 4, namely s,x,y,z, whereas a "p"
shell runs 2,3,4 for x,y,z. The table above is generated by writing all Cartesian products,
"maximum powers first", back to back:

 s, x,y,z, xx,yy,zz,xy,xz,yz,
 1 2 3 4 5 6 7 8 9 10
 xxx,yyy,zzz,xxy,xxz,yyx,yyz,zzx,zzy,xyz, ... g,h,i
 11 12 13, 14 15 16 17 18 19 20, ... g,h,i

An example, to try to make this concrete, is a 6-311G(d,p) basis for the molecule CSiH.
Just those three atoms, in that order:

 s L L L d s L L L L d s s s P

Katom 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

Kng 6 3 1 1 1 6 6 3 1 1 1 3 1 1 1

Ktype 1 2 2 2 3 1 2 2 2 2 3 1 1 1 2

Kmin 1 1 1 1 5 1 1 1 1 1 5 1 1 1 2

Kmax 1 4 4 4 10 1 4 4 4 4 10 1 1 1 4

Kstart 1 7 10 11 12 13 19 25 28 29 30 31 34 35 36

kloc 1 2 6 10 14

20 21 25 29 33 37

43 44 45 46

www.manaraa.com

 86

 -kloc- helps point to the right AO index, e.g. the d shell of the Si atom contains AOs
numbered 37,38,39,40,41,42. kloc(i) = kloc(i-1) + kmax(i) - kmin(i) + 1. total number
of AOs (NUM in common -infoa-) in this example is 48, from the hypothetical next
KLOC of 46 + 4 - 2 + 1.

Clearly -NSHELL- is 15, the number of columns given here.

Note that this example shows you how to tell a -p- from a -L-, even though -ktype- is 2 for
each. d shells always have 6 members, for spherical harmonics are not taken care of in the
basis (always a Cartesian Gaussian basis is set up) but rather at the time of varying the MOs
(either including or omitting the contaminations like xx+yy+zz according to ispher input). If
our molecule was really CSiH3, with C3v symmetry, the input gave only one of the
hydrogens. The following shows how does -nshel- change by two more atoms,

 s s s p s s s P
katom 4 4 4 4 5 5 5 5
kng 3 1 1 1 3 1 1 1
ktype 1 1 1 2 1 1 1 2
kmin 1 1 1 2 1 1 1 2
kmax 1 1 1 4 1 1 1 4
kstart 31 34 35 36 31 34 35 36
kloc 49 50 51 52

55 56 57 58
Since these are symmetry equivalent, -kstart- points to the original Gaussian details in -ex-
and -cx-, but these are additional AOs, so -kloc- does go up. -nshell- is now 24, and -num- is
now 60. a molecule may very well have many hydrogens, perhaps using identical basis sets,
but every different set of equivalent hydrogens gets separate storage of its
exponents/contraction coefficients (stored at different -kstart- values).

If the molecule has no symmetry (every atom has a new basis set) then the number of
primitives is greater or equals the number of atomic orbitals. A basis function, or atomic
orbital, those words are the same thing, is a linear combination of at least one Gaussian
primitive. When the symmetry of the molecule makes atoms equivalent (in C60, all 60 atoms
are the same), GAMESS stores only one such atom's basis. So it is possible, but unlikely,
that the number of Gaussians stored in /NSHEL/ could be smaller than the number of AOs.

We don't care very much about the total number of primitives, so the sum of the KNG array
is not actually stored! The integral codes loop over NSHELL, picking up the current shell's
KATOM, KNG, KMIN and so on. They have an inner loop over the KNG value, and loops
from KMIN to KMAX so as to do the integrals over all the primitives. But after the integrals
are finished, we only care about how many AOs there are, so NUM in /INFOA/ is saved for
the SCF programs to use.

	2007
	The component-based application for GAMESS
	Fang Peng
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	Common Component Architecture
	Quantum Chemistry

	CHAPTER 2. BACKGROUND
	Quantum Chemistry Calculations
	Basic terms
	Other important concepts

	GAMESS
	GAMESS Structures
	DDI

	CHAPTER 3. COMPONENTS IMPLEMENTATION FOR GAMESS
	CCA Chemistry Interfaces
	Mechanisms of Creating GAMESS CCA Components
	The GAMESS/DDI mechanism
	The GAMESS/DDI/MPI mechanism

	GAMESS CCA Components
	The design of GAMESS wrapper functions
	The design of GAMESS CCA components
	The structure of GAMESS CCA components

	CHAPTER 4. INTEGRATION
	4.1 The Integration of the Integral Calculation
	4.2 The Design of the GAMESS Client-Side

	CHAPTER 5. PERFORMANCE EVALUATION
	TAU Performance Tools
	Test the Performance Overhead of the CCA Framework
	The Load Balance in Two-Electron Integral Computations
	Performance Evaluation for Integral Computations

	CHAPTER 6. DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

